| v

ERLANG

Erlang Run-Time System Application
(ERTS)

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.
Erlang Run-Time System Application (ERTS) 8.3.5.7
June 5, 2019

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 5, 2019

1.1 Introduction

1 ERTS User's Guide

1.1 Introduction

1.1.1 Scope
The Erlang Runtime System Application, ERTS, contains functionality necessary to run the Erlang system.

Note:

By default, ERTS is only guaranteed to be compatible with other Erlang/OTP components from the same release
as ERTS itself.

For information on how to communicate with Erlang/OTP components from earlier releases, see the
documentation of system flag +Riner| (1).

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Communication in Erlang

Communication in Erlang is conceptually performed using asynchronous signaling. All different executing entities,
such as processes and ports, communicate through asynchronous signals. The most commonly used signal isamessage.
Other common signals are exit, link, unlink, monitor, and demonitor signals.

1.2.1 Passing of Signals

The amount of time that passes between a signal is sent and the arrival of the signal at the destination is unspecified
but positive. If the receiver has terminated, the signal does not arrive, but it can trigger another signal. For example, a
link signal sent to a non-existing process triggers an exit signal, which is sent back to where the link signal originated
from. When communicating over the distribution, signals can be lost if the distribution channel goes down.

The only signal ordering guarantee given is the following: if an entity sends multiple signals to the same destination
entity, the order is preserved; that is, if A sends asignal S1 to B, and later sends signal S2 to B, S1 is guaranteed
not to arrive after S2.

1.2.2 Synchronous Communication

Some communication is synchronous. If broken down into pieces, a synchronous communication operation consists of
two asynchronous signals; one request signal and one reply signal. An example of such asynchronous communication
isacalto erl ang: process_i nf o/ 2 whenthefirst argumentisnot sel f () . The caller sends an asynchronous
signal requesting information, and then waits for the reply signal containing the requested information. When the
reguest signal reaches its destination, the destination process replies with the requested information.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 1

1.3 Time and Time Correction in Erlang

1.2.3 Implementation

The implementation of different asynchronous signals in the virtual machine can vary over time, but the behavior
always respects this concept of asynchronous signals being passed between entities as described above.

By inspecting the implementation, you might notice that some specific signal gives a stricter guarantee than described
above. It is of vital importance that such knowledge about the implementation is not used by Erlang code, as the
implementation can change at any time without prior notice.

Examples of mgjor implementation changes:

* Asfrom ERTS5.5.2 exit signals to processes are truly asynchronously delivered.
e Asfrom ERTS5.10 all signals from processes to ports are truly asynchronously delivered.

1.3 Time and Time Correction in Erlang

1.3.1 New Extended Time Functionality

Note:

Asfrom Erlang/OTP 18 (ERTS 7.0) the time functionality has been extended. Thisincludes a new API for time
and time warp modes that change the system behavior when system time changes.

The default time warp mode has the same behavior as before, and the old API still works. Thus, you are not
required to change anything unless you want to. However, you are strongly encouraged to use the new API
instead of theold APl basedoner | ang: now 0.er | ang: now 0 isdeprecated, asitisand will beascalability
bottleneck.

By using the new API, you automatically get scalability and performance improvements. This also enables you
to use the multi-time warp mode that improves accuracy and precision of time measurements.

1.3.2 Terminology

To make it easier to understand this section, some terms are defined. Thisis a mix of our own terminology (Erlang/
OS system time, Erlang/OS monotonic time, time warp) and globally accepted terminology.

Monotonically Increasing

In a monotonically increasing sequence of values, al values that have a predecessor are either larger than or equal
to its predecessor.

Strictly Monotonically Increasing

In a strictly monotonically increasing sequence of values, al values that have a predecessor are larger than its
predecessor.

UTl
Universal Time. UT1 is based on the rotation of the earth and conceptually means solar time at 0° longitude.

uTC

Coordinated Universal Time. UTC amost aligns with UT1. However, UTC uses the Sl definition of a second, which
has not exactly the same length as the second used by UT1. This means that UTC slowly drifts from UT1. To keep
UTC relatively in sync with UT1, leap seconds are inserted, and potentially also deleted. That is, an UTC day can be
86400, 86401, or 86399 seconds long.

2 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

POSIX Time

Timesince Epoch. Epoch isdefined to be 00:00:00 UTC, 1970-01-01. A day in POSIX timeisdefined to be exactly
86400 seconds long. Strangely enough, Epoch is defined to beatimein UTC, and UTC has another definition of how
long aday is. Quoting the Open Group " POSI X timeistherefore not necessarily UTC, despiteits appearance” .
The effect of thisis that when an UTC leap second is inserted, POSIX time either stops for a second, or repeats the
last second. If an UTC leap second would be deleted (which has not happened yet), POSIX time would make a one
second leap forward.

Time Resolution
The shortest time interval that can be distinguished when reading time values.

Time Precision

The shortest time interval that can be distinguished repeatedly and reliably when reading time values. Precision is
limited by the resolution, but resolution and precision can differ significantly.

Time Accuracy

The correctness of time values.

Time Warp

A timewarp isaleap forwards or backwardsin time. That is, the difference of time values taken before and after the
time warp does not correspond to the actual elapsed time.

OS System Time

The operating systems view of POS X time. To retrieveit, call os: system ti me() . Thismay or may not be an
accurate view of POSIX time. This time may typically be adjusted both backwards and forwards without limitation.
That is, time warps may be observed.

To get information about the Erlang runtime system's source of OS system time, cal
erl ang: system.info(os_systemtinme_source).
OS Monotonic Time

A monotonically increasing time provided by the OS. This time does not |eap and has a relatively steady frequency
although not completely correct. However, it isnot uncommon that OS monotonic time stopsif the systemis suspended.
This time typically increases since some unspecified point in time that is not connected to OS system time. This type
of time is not necessarily provided by all OSs.

To get information about the Erlang runtime system's source of OS monotonic time, call
erl ang: system.info(os_nonotonic_tine_source).

Erlang System Time

The Erlang runtime systems view of POSI X time. To retrieveit, call erl ang: system ti nme().

This time may or may not be an accurate view of POSIX time, and may or may not align with OS system time. The
runtime system works towards aligning the two system times. Depending on the time warp mode used, this can be
achieved by letting Erlang system time perform atime warp.

Erlang Monotonic Time

A monotonically increasing time provided by the Erlang runtime system. Erlang monotonic time increases since some
unspecified point intime. To retrieveit, cal er| ang: monotoni c_tinme().

The accuracy and precision of Erlang monotonic time heavily depends on the following:
* Accuracy and precision of OSmonotonic time

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 3

href
href
href

1.3 Time and Time Correction in Erlang

» Accuracy and precision of OSsystemtime
e timewarp mode used

On a system without OS monotonic time, Erlang monotonic time guarantees monaotonicity, but cannot give other
guarantees. The frequency adjustments made to Erlang monotonic time depend on the time warp mode used.

Internally in the runtime system, Erlang monotonic timeis the "time engine" that is used for more or less everything
that has anything to do with time. All timers, regardlessof itisar ecei ve ... after timer, BIFtimer, or atimer
inthet i mer (3) module, are triggered relative Erlang monotonic time. Even Erlang systemtime is based on Erlang
monotonic time. By adding current Erlang monotonic timewith current time offset, you get current Erlang systemtime.

To retrieve the current time offset, call erl ang: ti me_of fset/O0.

1.3.3 Introduction

Timeisvital to an Erlang program and, more importantly, correct timeisvita to an Erlang program. As Erlang isa
language with soft real -time properties and we can expresstimein our programs, the Virtual Machine and the language
must be careful about what is considered a correct time and in how time functions behave.

When Erlang was designed, it was assumed that the wall clock time in the system showed a monotonic time moving
forward at exactly the same pace as the definition of time. This more or less meant that an atomic clock (or better time
source) was expected to be attached to your hardware and that the hardware was then expected to be locked away from
any human tinkering forever. While this can be a compelling thought, it is ssmply never the case.

A "normal" modern computer cannot keep time, not on itself and not unless you have a chip-level atomic clock wired
to it. Time, as perceived by your computer, must normally be corrected. Hence the Network Time Protocol (NTP)
protocol, together with the nt pd process, does its best to keep your computer time in sync with the correct time.
Between NTP corrections, usually aless potent time-keeper than an atomic clock is used.

However, NTP is not fail-safe. The NTP server can be unavailable, nt p. conf can be wrongly configured, or
your computer can sometimes be disconnected from Internet. Furthermore, you can have a user (or even system
administrator) who thinks the correct way to handle Daylight Saving Time isto adjust the clock one hour two times a
year (which isthe incorrect way to do it). To complicate things further, this user fetched your software from Internet
and has not considered what the correct time is as perceived by a computer. The user does not care about keeping the
wall clock in sync with the correct time. The user expects your program to have unlimited knowledge about the time.

Most programmers al so expect timeto bereliable, at least until they realizethat thewall clock time on their workstation
is off by aminute. Then they set it to the correct time, but most probably not in a smooth way.

The number of problems that arise when you always expect the wall clock time on the system to be correct can be
immense. Erlang therefore introduced the "corrected estimate of time", or the "time correction”, many years ago.
The time correction relies on the fact that most operating systems have some kind of monotonic clock, either areal-
time extension or some built-in "tick counter" that is independent of the wall clock settings. This counter can have
microsecond resolution or much less, but it has a drift that cannot be ignored.

1.3.4 Time Correction

If time correction is enabled, the Erlang runtime system makes use of both OS system time and OS monotonic time,
to adjust the frequency of the Erlang monotonic clock. Time correction ensures that Erlang monotonic time does not
warp and that the frequency isrelatively accurate. The type of frequency adjustments depends on the time warp mode
used. Section Time Warp Modes provides more details.

By default time correction is enabled if support for it exists on the specific platform. Support for it
includes both OS monotonic time, provided by the OS, and an implementation in the Erlang runtime
system using OS monotonic time. To check if your system has support for OS monotonic time, call
erl ang: system i nf o(os_nonotoni c_ti ne_source). To check if time correction is enabled on your
system, cal erl ang: system.info(tine_correction).

4 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

To enable or disable time correction, pass command-lineargument +c [true| fal se] toerl (1).

If time correction is disabled, Erlang monotonic time can warp forwards or stop, or even freeze for extended periods
of time. There are then no guarantees that the frequency of the Erlang monotonic clock is accurate or stable.

You typically never want to disable time correction. Previously a performance penalty was associated with time
correction, but nowadays it is usually the other way around. If time correction is disabled, you probably get bad
scalability, bad performance, and bad time measurements.

1.3.5 Time Warp Safe Code

Time warp safe code can handle atime warp of Erlang systemtime.

er | ang: now 0 behavesbad when Erlang system timewarps. When Erlang system time doesatimewarp backwards,
the values returned from er | ang: now O freeze (if you disregard the microsecond increments made because of the
actual call) until OS system time reaches the point of the last value returned by er | ang: now 0. This freeze can
continue for along time. It can take years, decades, and even longer until the freeze stops.

All usesof er | ang: now’ 0 are not necessarily time warp unsafe. If you do not useit to get time, it istime warp safe.
However, all usesof er | ang: now/ 0 aresuboptimal from aperformance and scalability perspective. So you really
want to replace the use of it with other functionality. For examples of how to replace the use of er | ang: now 0,
see section How to Work with the New API.

1.3.6 Time Warp Modes

Current Erlang system time is determined by adding the current Erlang monotonic time with current time offset. The
time offset is managed differently depending on which time warp mode you use.

To set the time warp mode, pass command-line argument +C [no_ti me_war p| si ngl e_ti ne_war p|
multi _time_warp] toerl (1).

No Time Warp Mode

The time offset is determined at runtime system start and does not change later. Thisis the default behavior, but not
because it is the best mode (which it is not). It is default only because this is how the runtime system behaved until
ERTS 7.0. Ensure that your Erlang code that can execute during atime warp is time warp safe before enabling other
modes.

Asthetime offset is not allowed to change, time correction must adjust the frequency of the Erlang monotonic clock
to align Erlang system time with OS system time smoothly. A significant downside of this approach is that we on
purpose will use a faulty frequency on the Erlang monotonic clock if adjustments are needed. This error can be as
large as 1%. This error will show up in all time measurements in the runtime system.

If time correction is not enabled, Erlang monotonic time freezes when OS system time leaps backwards. The freeze of
monatonic time continues until OS system time catches up. The freeze can continue for along time. When OS system
time leaps forwards, Erlang monotonic time also leaps forward.

Single Time Warp Mode

This mode is more or less a backward compatibility mode as from its introduction.

On an embedded system it is not uncommon that the system has no power supply, not even a battery, when it is shut
off. The system clock on such a system is typically way off when the system boots. If no time warp mode is used,
and the Erlang runtime system is started before OS system time has been corrected, Erlang system time can be wrong
for along time, centuries or even longer.

If you need to use Erlang code that is not time warp safe, and you need to start the Erlang runtime system before OS
system time has been corrected, you may want to use the single time warp mode.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 5

1.3 Time and Time Correction in Erlang

Note:

There are limitations to when you can execute time warp unsafe code using thismode. If it is possible to use time
warp safe code only, it is much better to use the multi-time warp mode instead.

Using the single time warp mode, the time offset is handled in two phases:
Preliminary Phase

This phase starts when the runtime system starts. A preliminary time offset based on current OS system time is
determined. This offset isfrom now on to be fixed during the whole preliminary phase.

If time correction is enabled, adjustmentsto the Erlang monotonic clock are made to keep its frequency as correct
as possible. However, no adjustments are made trying to align Erlang system time and OS system time. That
is, during the preliminary phase Erlang system time and OS system time can diverge from each other, and no
attempt is made to prevent this.

If time correction is disabled, changes in OS system time affects the monotonic clock the same way as when the
no time warp mode is used.

Fina Phase

This phase begins when the user finalizes the time offset by caling
erlang: system flag(ti me_of fset, finalize).Thefinalizationcan only be performed once.

During finalization, the time offset is adjusted and fixed so that current Erlang system time alignswith the current
OS system time. As the time offset can change during the finalization, Erlang system time can do atime warp at
this point. The time offset is from now on fixed until the runtime system terminates. If time correction has been
enabled, the time correction from now on also makes adjustments to align Erlang system time with OS system
time. When the system isin the final phase, it behaves exactly asin no time warp mode.

In order for this to work properly, the user must ensure that the foll owing two requirements are satisfied:
Forward Time Warp

The time warp made when finalizing the time offset can only be done forwards without encountering problems.
Thisimplies that the user must ensure that OS system time is set to atime earlier or equal to actual POSIX time
before starting the Erlang runtime system.

If you are not sure that OS system timeis correct, set it to atimethat is guaranteed to be earlier than actual POSIX
time before starting the Erlang runtime system, just to be safe.

Finalize Correct OS System Time
OS system time must be correct when the user finalizes the time offset.
If these requirements are not fulfilled, the system may behave very bad.

Assuming that these requirements are fulfilled, time correction is enabled, and OS system time is adjusted using a
time adjustment protocol such as NTP, only small adjustments of Erlang monotonic time are needed to keep system
times aligned after finalization. Aslong asthe system is not suspended, the largest adjustments needed are for inserted
(or deleted) leap seconds.

Warning:
To use this mode, ensure that al Erlang code that will execute in both phases is time warp safe.
Code executing only in the final phase does not have to be able to cope with the time warp.

6 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Multi-Time Warp Mode

Multi-time warp mode in combination with time correction is the preferred configuration. This as the Erlang
runtime system have better performance, scale better, and behave better on almost all platforms. Also, the accuracy
and precision of time measurements are better. Only Erlang runtime systems executing on ancient platforms benefit
from another configuration.

The time offset can change at any time without limitations. That is, Erlang system time can perform time warps both
forwards and backwards at any time. Aswe align Erlang system time with OS system time by changing the time offset,
we can enable a time correction that tries to adjust the frequency of the Erlang monotonic clock to be as correct as
possible. This makes time measurements using Erlang monotonic time more accurate and precise.

If time correction is disabled, Erlang monotonic time leaps forward if OS system time leaps forward. If OS system
time leaps backwards, Erlang monotonic time stops briefly, but it does not freeze for extended periods of time. This
asthe time offset is changed to align Erlang system time with OS system time.

Warning:

To use this mode, ensure that all Erlang code that will execute on the runtime system is time warp safe.

1.3.7 New Time API

TheoldtimeAPl isbasedoner | ang: now 0.er | ang: now 0 wasintended to be used for many unrelated things.
Thistied these unrelated operations together and caused issues with performance, scalability, accuracy, and precision
for operations that did not need to have such issues. To improve this, the new API spreads different functionality over
multiple functions.

To be backward compatible, er | ang: now 0 remains "as is', but you are strongly discouraged from using it.
Many use cases of er | ang: now/ 0 prevents you from using the new multi-time warp mode, which is an important
part of this new time functionality improvement.

Some of the new BIFson some systems, perhaps surprisingly, return negative integer values on anewly started runtime
system. Thisis not a bug, but a memory use optimization.

The new API consists of the following new BIFs:

e erlang:convert_time_unit/3
 erlang:nonotonic_tine/0

e erlang:nonotonic_tine/l

* erlang:systemtinme/0

e erlang:systemtine/l

e erlang:tinme_offset/0

e erlang:time_offset/1

e erlang:tinestanp/0

* erlang:unique_integer/0

e erlang:unique_integer/1

e o0s:systemtine/0

e o0s:systemtine/l

The new API also consists of extensions of the following existing BIFs:

« erlang:nonitor(tinme_offset, clock_service)
e erlang:systemflag(tinme_offset, finalize)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 7

1.3 Time and Time Correction in Erlang

« erlang: system.info(os_nonotonic_time_source)
e erlang:systeminfo(os_systemtine_source)

e erlang:system.info(tinme_offset)

« erlang:systeminfo(tinme_warp_node)

e erlang:systeminfo(tinme_correction)

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

New Erlang Monotonic Time

Erlang monotonic time as such isnew asfrom ERTS 7.0. It isintroduced to detach time measurements, such as el apsed
time from calendar time. In many use cases there is a need to measure elapsed time or specify a time relative to
another point in time without the need to know the involved timesin UTC or any other globally defined time scale.
By introducing a time scale with a local definition of where it starts, time that do not concern calendar time can be
managed on that time scale. Erlang monotonic time uses such atime scale with alocally defined start.

Theintroduction of Erlang monotonic time allows usto adjust the two Erlang times (Erlang monotonic time and Erlang
system time) separately. By doing this, the accuracy of elapsed time does not have to suffer just because the system
time happened to bewrong at some point in time. Separate adjustments of the two times are only performed in thetime
warp modes, and only fully separated in the multi-time warp mode. All other modes than the multi-time warp mode
are for backward compatibility reasons. When using these modes, the accuracy of Erlang monotonic time suffer, as
the adjustments of Erlang monotonic time in these modes are more or less tied to Erlang system time.

The adjustment of system time could have been made smother than using a time warp approach, but we think that
would be abad choice. Aswe can express and measure time that is not connected to calendar time by the use of Erlang
monotonic time, it is better to expose the change in Erlang system time immediately. This as the Erlang applications
executing on the system can react on the change in system time as soon as possible. Thisis also more or less exactly
how most operating systems handl e this (OS monotonic time and OS system time). By adjusting system time smoothly,
we would just hide the fact that system time changed and make it harder for the Erlang applications to react to the
change in a sensible way.

To be abletoreact to achangein Erlang system time, you must be able to detect that it happened. The changein Erlang
system time occurs when the current time offset is changed. We have therefore introduced the possibility to monitor
thetimeoffset using erl ang: nonitor (ti me_offset, clock _service).A process monitoring the time
offset is sent a message on the following format when the time offset is changed:

{'CHANGE', MonitorReference, time offset, clock service, NewTimeOffset}

Unique Values

Besidesreportingtime, er | ang: now' 0 also produces unique and strictly monotonically increasing values. To detach
this functionality from time measurements, we have introduced er | ang: uni que_i nt eger ().

How to Work with the New API

Previoudly er | ang: now O was the only option for doing many things. This section deals with some things that
er |l ang: now 0 can be used for, and how you use the new API.

8 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.3 Time and Time Correction in Erlang

Retrieve Erlang System Time

Don't:
Useer | ang: now O to retrieve the current Erlang system time.

Do:
Use erl ang: system ti ne/ 1 toretrieve the current Erlang system time on the time unit of your choice.

If you want the same format as returned by er | ang: now 0, use er | ang: ti mest anp/ 0.

Measure Elapsed Time

Don't:

Take time stamps with er | ang: now 0 and calculate the differencein timewith ti mer: now di ff/ 2.

Do:

Take time stamps with er| ang: nonot oni c_ti ne/ 0 and calculate the time difference using ordinary
subtraction. The result isin nat i ve time unit. If you want to convert the result to another time unit, you can
use erl ang: convert tinme_unit/3.

An easier way to do thisisto use er | ang: nonot oni c_t i ne/ 1 with the desired time unit. However, you
can then lose accuracy and precision.

Determine Order of Events

Don't:

Determine the order of events by saving atime stamp with er | ang: now' 0 when the event occurs.

Do:

Determine the order of events by saving the integer returned by
erl ang: uni que_i nt eger ([nonot oni c]) when the event occurs. These integers are strictly
monotonically ordered on current runtime system instance corresponding to creation time.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 9

1.3 Time and Time Correction in Erlang

Determine Order of Events with Time of the Event

Don't:

Determine the order of events by saving atime stamp with er | ang: now 0 when the event occurs.

Do:

Determinethe order of events by saving atuple contai ning monotonic time and astrictly monotonically increasing
integer asfollows:

Time = erlang:monotonic time(),
UMI = erlang:unique integer([monotonic]),
EventTag = {Time, UMI}

Thesetuplesare strictly monotonically ordered on the current runtime system instance according to creation time.
It isimportant that the monotonic timeisin thefirst element (the most significant el ement when comparing two-
tuples). Using the monotonic time in the tuples, you can calculate time between events.

If you are interested in Erlang system time at the time when the event occurred, you can also save the time offset
before or after saving the events using er | ang: ti me_of f set/ 0. Erlang monotonic time added with the
time offset corresponds to Erlang system time.

If you are executing in a mode where time offset can change, and you want to get the actual Erlang system time
when the event occurred, you can save the time offset as athird element in the tuple (the least significant element
when comparing three-tuples).

Create a Unique Name

Don't:

Use the values returned from er | ang: now/ 0 to create a name unique on the current runtime system instance.

Do:

Use the vaue returned from erl ang: uni que_integer/0 to create a name unique on
the current runtime system instance. If you only want positive integers, you can use
erl ang: uni que_i nt eger ([positive]).

10 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

Seed Random Number Generation with a Unique Value

Don't:

Seed random number generation using er | ang: now() .

Do:

Seed random number generation using a combination of er| ang: nonot oni c_ti me(),
erlang:ti me_offset(), erl ang: uni que_i nt eger (), and other functionality.

To sum up this section: Do not useer | ang: now 0.

1.3.8 Support of Both New and Old OTP Releases

It can be required that your code must run on avariety of OTP installations of different OTP releases. If so, you cannot
usethe new API out of the box, asit will not be available on releases before OTP 18. The solution isnot to avoid using
the new API, as your code would then not benefit from the scalability and accuracy improvements made. Instead, use
the new APl when available, and fall back oner | ang: now' 0 when the new API is unavailable.

Fortunately most of the new API can easily be implemented using existing primitives, except for:

e erlang:systeminfo(start_tine)

e erlang:systeminfo(end_tine)

e erlang: system.info(os_nonotonic_tinme_source)

e erlang:systeminfo(os_systemtine_source))

By wrapping the APl with functions that fall back on er| ang: now 0 when the new API is unavailable, and

using these wrappers instead of using the API directly, the problem is solved. These wrappers can, for example, be
implemented asin $ERL _TOP/ertgexample/time_compat.erl.

1.4 Match Specifications in Erlang

A "match specification” (mat ch_spec) isan Erlang term describing asmall "program” that triesto match something.
It can be used to either control tracing with erlang:trace pattern/3 or to search for objectsin an ETS table with for
example ets: select/2. The match specification in many ways works like a small function in Erlang, but isinterpreted/
compiled by the Erlang runtime system to something much more efficient than calling an Erlang function. The match
specification is also very limited compared to the expressiveness of real Erlang functions.

The most notable difference between a match specification and an Erlang fun is the syntax. Match specifications are
Erlang terms, not Erlang code. Also, a match specification has a strange concept of exceptions:

e An exception (such as badar g) in the Mat chCondi t i on part, which resembles an Erlang guard, generates
immediate failure.

* Anexception in the Mat chBody part, which resembles the body of an Erlang function, isimplicitly caught and
resultsinthesingleatom' EXI T' .

1.4.1 Grammar
A match specification used in tracing can be described in the following infor mal grammar:
e MatchExpression ::= [MatchFunction, ...]

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 11

href

1.4 Match Specifications in Erlang

MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

MatchHead ::= MatchVariable|' ' |[MatchHeadPart, ...]

MatchHeadPart ::= term() | MatchVariable|" _'

MatchVariable ::= '$<number>'

MatchConditions ::= [MatchCondition, ...] | []

MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }
BoolFunction::=is_atom]|is_float |is_integer |is_list|is_nunber |is_pid]|is_port |
is_reference|is_tuplel|is_map|is_binary]|is_function]|is_record]|is_seq_trace|
"and' |'or' |'not' |'xor' |'andal so' |' orel se'

ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ... }} |[] | [ConditionExpression, ...] |#{} |#{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::= term() (not list or tuple or map)

Constant ::={const , term()}

GuardFunction ::= BoolFunction | abs | el enent |hd || engt h [node [round |size|t] |trunc|' +
["-"|"*" ["div' |"rem |'"band" |'bor' |"bxor' ["bnot' |'"bsl" |"bsr' |'>" |'>="|'<" |
=< M= == == = | sel f |get _tew

MatchBody ::=[ActionTerm]

ActionTerm ::= ConditionExpression | ActionCall

ActionCall ::= { ActionFunction} | { ActionFunction, ActionTerm, ...}

ActionFunction ::=set _seq_t oken |get _seq_t oken |nmessage |[return_trace |
exception_trace |process_dunp |enabl e_trace|di sable_trace|trace |display|
caller |set_tcw]|silent

A match specification usedin et s(3) can be described in the following informal grammar:

MatchExpression ::= [MatchFunction, ...]

MatchFunction ::= { MatchHead, MatchConditions, MatchBody }

MatchHead ::= MatchVariable|"' _' |{ MatchHeadPart, ... }

MatchHeadPart ::= term() | MatchVariable|" _'

MatchVariable ::= '$<number>'

MatchConditions ::= [MatchCondition, ...] | []

MatchCondition ::= { GuardFunction } | { GuardFunction, ConditionExpression, ... }
BoolFunction::=is_atom|is _float |is_integer |[is_|list|is_nunber |[is pid]|is_port |
is referencel|is _tuple|is map|is_binary|is function]|is_record]|is_seq trace|
"and' |'or' |'not' |'xor' |'andal so' |' orel se'

ConditionExpression ::= ExprMatchVariable | { GuardFunction } | { GuardFunction, ConditionExpression, ... }
| TermConstruct

ExprMatchVariable ::= MatchVariable (bound in the MatchHead) |' $_' |' $$'

TermConstruct = {{}} | {{ ConditionExpression, ...}} |[] |[ConditionExpression, ...] | #{} | #{term() =>
ConditionExpression, ...} | NonCompositeTerm | Constant

NonCompositeTerm ::= term() (not list or tuple or map)
Constant ::={const , term()}

12 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

e GuardFunction ::= BoolFunction | abs | el enent |hd || engt h |node |round |size|t] |[trunc|' +
["-"|"*" ["div' |"rem |'"band" |'bor' |"bxor' ["bnot' |'"bsl" |"bsr' |'>" |'>="|'<" |
=< =i == == '] = |sel f |get_tcw

e MatchBody ::=[ConditionExpression, ...]

1.4.2 Function Descriptions

Functions Allowed in All Types of Match Specifications
The functions allowed in mat ch_spec work asfollows:
is_atomis_float,is_ integer,is_list,is_nunber,is_pid,is_port,is_reference,
is_tuple,is_map,is_binary,is_function
Same as the corresponding guard testsin Erlang, returnt r ue or f al se.
is_record

Takes an additional parameter, which must betheresult of r ecord_i nf o(si ze, <record_type>),like
in{is_record, '$1', rectype, record_info(size, rectype)}.

not
Negates its single argument (anything other than f al se givesf al se).

and

Returnst r ue if all itsarguments (variablelength argument list) evaluatetot r ue, otherwisef al se. Evaluation
order is undefined.

or
Returns t r ue if any of its arguments evaluates to t r ue. Variable length argument list. Evaluation order is
undefined.

" andal so'
Worksas' and' , but quits evaluating its arguments when one argument eval uates to something elsethant r ue.
Arguments are evaluated |eft to right.

"orel se'
Worksas' or' , but quits evaluating as soon asone of itsarguments evaluatestot r ue. Arguments are evaluated
|eft to right.

' xor'
Only two arguments, of which onemust bet r ue andthe other f al se toreturnt r ue; otherwise' xor"' returns
false.

abs, el enent , hd, | engt h, node, round, si ze,t!| ,trunc," + ,"'-","*" /"div','rem ,' band',

1 borl 7I bxorl ,I bnotl ,I bsl L} ,I bsrl ,I >I ,I >:I 7I <I ,I :<I ,I :: :I ,I ::I ,I :/:I ,I /:I 7Self

Same asthe corresponding Erlang BIFs (or operators). In case of bad arguments, the result depends on the context.
In the Mat chCondi t i ons part of the expression, the test fails immediately (like in an Erlang guard). In the
Mat chBody part, exceptions are implicitly caught and the call resultsin theatom ' EXI T' .

Functions Allowed Only for Tracing
The functions allowed only for tracing work as follows:
is_seq_trace
Returnst r ue if asequentia trace token is set for the current process, otherwisef al se.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 13

1.4 Match Specifications in Erlang

set _seq_t oken

Worksasseq_trace: set _token/ 2, but returnst r ue on success, and' EXI T' on error or bad argument.
Only allowed in the Mat chBody part and only allowed when tracing.

get _seq_t oken
Sameasseq_trace: get _token/ 0 andonly allowed inthe Mat chBody part when tracing.
nessage

Sets an additional message appended to the trace message sent. One can only set one additional message in the
body. Later calls replace the appended message.

As a specia case, { nessage, fal se} disables sending of trace messages (‘call' and 'return_to") for this
function call, just like if the match specification had not matched. This can be useful if only the side effects of
the Mat chBody part are desired.

Another special caseis{ nessage, true}, which setsthe default behavior, asif the function had no match
specification; trace message is sent with no extra information (if no other calls to message are placed before
{message, true},itisinfacta"noop").

Takes one argument: the message. Returnst r ue and can only be used inthe Mat chBody part and when tracing.
return_trace

Causesar et ur n_f r omtrace message to be sent upon return from the current function. Takes no arguments,
returnst r ue and can only be used in the Mat chBody part when tracing. If the processtrace flag si | ent is
active, ther et ur n_f r omtrace message is inhibited.

Warning: If the traced function istail-recursive, this match specification function destroysthat property. Hence,
if amatch specification executing this function is used on a perpetual server process, it can only be active for
alimited period of time, or the emulator will eventually use all memory in the host machine and crash. If this
match specification function isinhibited using process trace flag si | ent , tail-recursiveness still remains.

exception_trace

Worksasr et urn_t race plus; if the traced function exits because of an exception, an excepti on_from
trace message is generated, regardless of the exception is caught or not.

process_dunp

Returns some textual information about the current process as a binary. Takes no arguments and is only allowed
in the Mat chBody part when tracing.

enabl e_trace

With one parameter this function turns on tracing like the Erlang call er | ang: trace(sel f (), true,
[P2]) , where P2 isthe parameter to enabl e_t r ace.

With two parameters, the first parameter is to be either a process identifier or the registered name of a
process. In this case tracing is turned on for the designated process in the same way as in the Erlang call
erlang:trace(Pl, true, [P2]),wherePl isthefirstand P2 isthe second argument. The process P1
gets its trace messages sent to the same tracer as the process executing the statement uses. P1 cannot be one
of theatomsal | , newor exi sti ng (unlessthey are registered names). P2 cannot becpu_t i mest anp or
tracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.
di sabl e_trace

With one parameter this function disables tracing like the Erlang call er | ang: trace(sel f (), fal se,
[P2]) , where P2 isthe parameter to di sabl e_trace.

14 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

With two parameters this function works as the Erlang call er | ang: trace(P1, false, [P2]), where
P1 can be either a process identifier or a registered name and is specified as the first argument to the match
specification function. P2 cannot becpu_ti nestanp ortracer.

Returnst r ue and can only be used in the Mat chBody part when tracing.
trace

With two parameters this function takes a list of trace flags to disable as first parameter and a list of trace
flags to enable as second parameter. Logically, the disable list is applied first, but effectively al changes are
applied atomically. The trace flags are the ssme asfor er | ang: t race/ 3, not including cpu_t i nest anp,
butincludingtracer.

If atracer is specified in both lists, the tracer in the enable list takes precedence. If no tracer is specified, the same
tracer as the process executing the match specification is used.

When using a tracer module, the module must be loaded before the match specification is executed. If it is not
|loaded, the match fails.

With three parameters to this function, the first is either a process identifier or the registered name of a process
to set trace flags on, the second is the disable list, and the third is the enable list.

Returnst r ue if any trace property was changed for the trace target process, otherwisef al se. Can only be used
in the Mat chBody part when tracing.

call er

Returns the calling function as a tuple { Modul e, Function, Arity} orthe atom undefi ned if the
calling function cannot be determined. Can only be used in the Mat chBody part when tracing.

Notice that if a"technically built in function” (that is, a function not written in Erlang) is traced, the cal | er
function sometimesreturnsthe atom undef i ned. The calling Erlang function is not available during such calls.

di spl ay

For debugging purposes only. Displaysthe single argument as an Erlang term on st dout , which is seldom what
iswanted. Returnst r ue and can only be used in the Mat chBody part when tracing.

get _tcw

Takes no argument and returns the value of the node's trace control word. The same is done by
erl ang: system.info(trace_control _word).

The trace control word isa 32-bit unsigned integer intended for generic trace control. The trace control word can
betested and set both from within trace match specificationsand with BIFs. Thiscall isonly allowed when tracing.

set_tcw

Takes one unsigned integer argument, sets the value of the node's trace control word to the value of the argument,
and returns the previous value. The same is done by er | ang: system fl ag(trace_control _word,
Val ue) . Itisonly alowed to useset _t cwinthe Mat chBody part when tracing.

sil ent

Takes one argument. If the argument ist r ue, the call trace message mode for the current processis set to silent
for this call and al later calls, that is, call trace messages are inhibited even if { message, true} iscaled
in the Mat chBody part for atraced function.

This mode can also be activated with flag si | ent toer | ang: trace/ 3.

If the argument isf al se, the call trace message mode for the current process is set to normal (non-silent) for
thiscall and al later calls.

If theargumentisnott r ue or f al se, the call trace message mode is unaffected.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 15

1.4 Match Specifications in Erlang

Note:

All "function calls' must be tuples, even if they take no arguments. The value of sel f isthe atom() sel f, but
thevalue of { sel f} isthe pid() of the current process.

1.4.3 Match target

Each execution of amatch specification is done against a match target term. The format and content of the target term
depends on the context in which the match is done. The match target for ETS is always a full table tuple. The match
target for call trace is always alist of al function arguments. The match target for event trace depends on the event
type, see table below.

Context Type Match target Description
ETS {Key, Vduel, Vaue2, ...} | A tableobject
Trace cal [Argl, Arg2, ..] Function arguments
. Receiving process/port and
Trace send [Receiver, Message] m e term
T Sending node, process/port
Trace receive [Node, Sender, Message] andm o term

Table 4.1: Match target depending on context

1.4.4 Variables and Literals

Variables take the form ' $<nunber >' , where <numrber > is an integer between 0 and 100,000,000 (1e+8). The
behavior if the number isoutside theselimitsisundefined. Inthe Mat chHead part, the special variable' _' matches
anything, and never gets bound (like _ in Erlang).

* IntheMat chCondi ti on/ Mat chBody parts, no unbound variablesarealowed, so' ' isinterpreted asitself
(an atom). Variables can only be bound in the Mat chHead part.

e Inthe Mat chBody and Mat chCondi t i on parts, only variables bound previously can be used.

» Asagpecial case, the following apply in the Mat chCondi t i on/ Mat chBody parts:

e Thevariable' $_' expandsto the whole match target term.
e The variable ' $$' expands to a list of the values of al bound variables in order (that is,
["$1',"%2", ...]).
Inthe Mat chHead part, al literals (except the variables above) are interpreted "asis’.
In the Mat chCondi t i on/ Mat chBody parts, the interpretation is in some ways different. Literals in these parts

can either be written "asis", which works for all literals except tuples, or by using the special form { const, T},
where T isany Erlang term.

For tuple literas in the match specification, double tuple parentheses can also be used, that is, construct them as a
tuple of arity one containing asingle tuple, which is the one to be constructed. The "double tuple parenthesis’ syntax
is useful to construct tuples from already bound variables, likein{{' $1', [a, b,' $2']}}. Examples:

Expression Variable Bindings Result

16 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

{{'$1,$2}} '$1'=a,'$2 = b {ab}

{const, {'$1', '$2'}} Irrelevant {'$1, '$2}

a Irrelevant a

3T S =] (]

[$1] $1'=]] (1]

[{{a}}] Irrelevant [{a}]

42 Irrelevant 42

"hello" Irrelevant "hello"

$1 Irrelevant 49 (the ASCII value for character '1")

Table 4.2: Literals in MatchCondition/MatchBody Parts of a Match Specification

1.4.5 Execution of the Match

The execution of the match expression, when the runtime system decides whether a trace message is to be sent, is
asfollows:

For each tuple in the Mat chExpr essi on list and while no match has succeeded:
e Match the Mat chHead part against the match target term, binding the' $<nunber >' variables (much like in
et s: mat ch/ 2). If the Mat chHead part cannot match the arguments, the match fails.

» Evaluateeach Mat chCondi ti on (whereonly ' $<nunber >' variables previously boundin the Mat chHead
part can occur) and expect it to return the atom t r ue. When a condition does not evaluate to t r ue, the match
fails. If any BIF call generates an exception, the match also fails.

* Two cases can occur:
» If the match specification is executing when tracing:

Evaluate each Act i onTer min the same way as the Mat chCondi t i ons, but ignore the return values.
Regardless of what happensin this part, the match has succeeded.
« |f the match specification is executed when selecting objects from an ETS table:

Evaluate the expressions in order and return the value of the last expression (typically there is only one
expression in this context).

1.4.6 Differences between Match Specifications in ETS and Tracing

ETS match specifications produce a return value. Usuadly the W©MatchBody contains one single
Condi ti onExpr essi on that defines the return value without any side effects. Calls with side effects are not
allowed in the ETS context.

When tracing thereis no return value to produce, the match specification either matches or does not. The effect when
the expression matches is a trace message rather than a returned term. The Act i onTer ns are executed as in an
imperative language, that is, for their side effects. Functions with side effects are also alowed when tracing.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 17

1.4 Match Specifications in Erlang

1.4.7 Tracing Examples

Match an argument list of three, where the first and third arguments are equal:

[{['s1", '_", '$1'],
[1,
[1}]

Match an argument list of three, where the second argument is a number > 3:

e, 's1y, "',

[{ '>", '$1', 3},
[1}]

Match an argument list of three, where the third argument is either a tuple containing argument one and two, or alist
beginning with argument one and two (that is,[a, b, [a, b, c]] or[a, b, {a, b}]):

[{['$1", '$2', '$3'],

[{'orelse',
{'=:=", "$3", {{'$1',"'$2'}}},
{'and'
{'=:=", "$1', {hd, '$3'}},
{'=:=", '$2', {hd, {tl, "'$3'}}}}}1,

The above problem can a so be solved as follows:

[{['s1', "$2', {'s1', '$2}1, [I, [1},
{['$1', '$2°, ['s1', '$2' | '_'11, [1, [1}]

Match two arguments, where the first is a tuple beginning with a list that in turn begins with the second argument
timestwo (thatis, [{[4, x],y},2] or [{[8], vy, z},4]):

[{r's1', "$2'1,[{'=:=", {"*", 2, '$2'}, {hd, {element, 1, '$1'}}}I,
[1}]

Match three arguments. When all three are equal and are numbers, append the process dump to the trace message,
otherwise let the trace message be "asis", but set the sequential trace token label to 4711:

[{['$1', '$1', '$1'],
[{is number, '$1'}],
[{message, {process dump}}]},
{' ', [1, [{set seq token, label, 4711}]}]

18 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.4 Match Specifications in Erlang

Ascan be noted above, the parameter list can be matched against asingleMat chVar i abl eoran' _' . Toreplacethe
whole parameter list with asingle variableis a special case. In all other casesthe Mat chHead must be a proper list.

Generate a trace message only if the trace control word is set to 1.

{_"
[{'==",{get tcw},{const, 1}}],
[1}]

Generate a trace message only if thereisaseq_t r ace token:

{_"
[{'==',{is seq trace},{const, 1}}1,
[1}]

Removethe' si | ent' traceflag when thefirst argumentis' ver bose' , and add it whenitis' sil ent' :

[{'$1",
[{'==',{hd, '$1'},verbose}],
[{trace, [silent],[]}]},
{'$1",
[{'==",{hd, '$1'},silent}],

[{trace, [],[silent]}]}]
Add ar et urn_t r ace messageif the functionis of arity 3:

[{'$1",
[{'==',{length, '$1'},3}1,
[{return_trace}l},

{'"_",[1,[1}]
Generate a trace message only if the function is of arity 3 and thefirst argumentis' t r ace' :

[{['trace',6 '$2"',"'$3"'],
[1,
[1},

{'_",[1,[1}]

1.4.8 ETS Examples

Match all objectsin an ETStable, wherethefirst element istheatom* st ri der' andthetuplearity is 3, and return
the whol e object:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 19

1.5 How to Interpret the Erlang Crash Dumps

[{{strider,"' "',"' '},
[1,
['$_'1}]

Match all objectsin an ETStable with arity > 1 and the first element is'gandalf’, and return element 2:

[{'s1",
[{'==', gandalf, {element, 1, '$1'}},{'>=',{size, '$1'},2}],
[{element,2,'$1'}]1}]

In this example, if the first element had been the key, it is much more efficient to match that key in the Mat chHead
part thaninthe Mat chCondi t i ons part. The search space of thetablesisrestricted with regardsto the Mat chHead
so that only objects with the matching key are searched.

Match tuples of three elements, where the second element is either ' nerry' or' pi ppi n' , and return the whole
objects:

[({{'_",merry,"'_'},
[1

['$ "1},
{E]'_' ,pippin,' '},
['$ '1}]

Functionet s: t est _ns/ 2> can be useful for testing complicated ETS matches.

1.5 How to Interpret the Erlang Crash Dumps

This section describestheer | _cr ash. dunp file generated upon abnormal exit of the Erlang runtime system.

Note:

The Erlang crash dump had a major facelift in Erlang/OTP R9C. The information in this section is therefore not
directly applicable for older dumps. However, if you use cr ashdunp_vi ewer (3) on older dumps, the crash
dumps are translated into a format similar to this.

The system writes the crash dump in the current directory of the emulator or in thefile pointed out by the environment
variable (whatever that means on the current operating system) ERL_ CRASH DUMP. For a crash dump to be written,
awritable file system must be mounted.

Crash dumps are written mainly for one of two reasons. either the built-in function er | ang: hal t/ 1 is called
explicitly with a string argument from running Erlang code, or the runtime system has detected an error that cannot
be handled. The most usua reason that the system cannot handle the error is that the cause is external limitations,
such as running out of memory. A crash dump caused by an internal error can be caused by the system reaching limits
in the emulator itself (like the number of atoms in the system, or too many simultaneous ETS tables). Usually the
emulator or the operating system can be reconfigured to avoid the crash, which is why interpreting the crash dump
correctly isimportant.

20 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

On systemsthat support OS signals, it isalso possibleto stop the runtime system and generate a crash dump by sending
the SI GUSR1 signal.

The Erlang crash dump is areadable text file, but it can be difficult to read. Using the Crashdump Viewer tool in the
bser ver application simplifies the task. Thisis awx-widget-based tool for browsing Erlang crash dumps.

1.5.1 General Information
Thefirst part of the crash dump shows the following:

e The creation time for the dump

* A dlogan indicating the reason for the dump

* The system version of the node from which the dump originates
e The compile time of the emulator running the originating node

e The number of atomsin the atom table

e Theruntime system thread that caused the crash dump

Reasons for Crash Dumps (Slogan)

The reason for the dump is shown in the beginning of thefile as:

Slogan: <reason>

If the system is halted by the BIF er | ang: hal t / 1, the slogan is the string parameter passed to the BIF, otherwise
it isadescription generated by the emulator or the (Erlang) kernel. Normally the message is enough to understand the
problem, but some messages are described here. Notice that the suggested reasons for the crash are only suggestions.
The exact reasons for the errors can vary depending on the local applications and the underlying operating system.

<A>: Cannot allocate <N> bytes of memory (of type" <T>")

The system has run out of memory. <A> is the alocator that failed to allocate memory, <N> is the number of
bytes that <A> tried to alocate, and <T> is the memory block type that the memory was needed for. The most
common case is that a process stores huge amounts of data. In this case <T> is most often heap, ol d_heap,
heap_frag, or bi nary. For moreinformation on alocators, seeerts_al | oc(3).

<A>: Cannot reallocate <N> bytes of memory (of type" <T>")

Same as above except that memory was reallocated instead of allocated when the system ran out of memory.
Unexpected op code <N>

Error in compiled code, beamfile damaged, or error in the compiler.

M odule <Name> undefined | Function <Name> undefined | No function <Name>:<Name>/1| No function
<Name>:start/2

The Kernel/STDLIB applications are damaged or the start script is damaged.
Driver_select called with too largefile descriptor N

The number of file descriptors for sockets exceeds 1024 (Unix only). The limit on file descriptors in some Unix
flavors can be set to over 1024, but only 1024 sockets/pipes can be used simultaneously by Erlang (because of
limitations in the Unix sel ect call). The number of open regular filesis not affected by this.

Received SIGUSR1

Sending the SI GUSRL1 signal to an Erlang machine (Unix only) forces a crash dump. This slogan reflects that
the Erlang machine crash-dumped because of receiving that signal.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 21

1.5 How to Interpret the Erlang Crash Dumps

Kernel pid terminated (<Who>) (<Exit reason>)

The kernel supervisor has detected a failure, usualy that the appl i cati on_control | er has shut down
(Who =appl i cation_controll er,Wy =shut down). Theapplication controller can have shut down for
many reasons, the most usual is that the node name of the distributed Erlang node is already in use. A complete
supervisor tree "crash” (that is, the top supervisors have exited) gives about the same result. This message comes
from the Erlang code and not from the virtual machineitself. It isalways because of somefailurein an application,
either within OTP or a"user-written" one. Looking at the error log for your application is probably the first step
to take.

I nit terminating in do_boot ()

The primitive Erlang boot sequence was terminated, most probably because the boot script has errors or cannot
be read. Thisis usually a configuration error; the system can have been started with a faulty - boot parameter
or with aboot script from the wrong OTP version.

Could not start kerne pid (<Who>) ()

One of the kernel processes could not start. This is probably because of faulty arguments (like errorsin a -
confi g argument) or faulty configuration files. Check that all files are in their correct location and that the
configuration files (if any) are not damaged. Usually messages are also written to the controlling terminal and/
or the error log explaining what iswrong.

Other errors than these can occur, as the er | ang: hal t/ 1 BIF can generate any message. If the message is not
generated by the BIF and does not occur in the list above, it can be because of an error in the emulator. There can
however be unusual messages, not mentioned here, which are still connected to an application failure. Thereis much
more information available, so athorough reading of the crash dump can reveal the crash reason. The size of processes,
the number of ETS tables, and the Erlang data on each process stack can be useful to find the problem.

Number of Atoms

The number of atoms in the system at the time of the crash is shown as Atoms; <number>. Some ten thousands
atomsis perfectly normal, but more canindicatethat theBIF er | ang: | i st _t o_at om 1 isused to generate many
different atoms dynamically, which is never a good idea.

1.5.2 Scheduler Information

Under the tag =scheduler is shown information about the current state and statistics of the schedulersin the runtime
system. On operating systems that allow suspension of other threads, the data within this section reflects what the
runtime system looks like when a crash occurs.

The following fields can exist for a process:
=scheduler:id

Heading. States the scheduler identifier.
Scheduler Sleep Info Flags

If empty, the scheduler was doing some work. If not empty, the scheduler is either in some state of sleep, or
suspended. This entry isonly present in an SMP-enabled emulator.

Scheduler Sleep Info Aux Work

If not empty, a scheduler internal auxiliary work is scheduled to be done.
Current Port

The port identifier of the port that is currently executed by the scheduler.

22 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

Current Process

The process identifier of the process that is currently executed by the scheduler. If there is such a process, this
entry isfollowed by the State, Internal State, Program Counter, and CP of that same process. The entries are
described in section Process | nformation.

Notice that this is a snapshot of what the entries are exactly when the crash dump is starting to be generated.
Therefore they are most likely different (and more telling) than the entries for the same processes found in the
=proc section. If thereis no currently running process, only the Current Process entry is shown.

Current Process Limited Stack Trace

Thisentry is shown only if thereis a current process. It is similar to =proc_stack, except that only the function
frames are shown (that is, the stack variables are omitted). Also, only the top and bottom part of the stack are
shown. If the stack is small (< 512 dlots), the entire stack is shown. Otherwise the entry skipping ## slots is
shown, where ## is replaced by the number of dlots that has been skipped.

Run Queue
Shows statistics about how many processes and ports of different priorities are scheduled on this scheduler.
** crashed **

This entry is normally not shown. It signifies that getting the rest of the information about this scheduler failed
for some reason.

1.5.3 Memory Information

Under the tag =memory is shown information similar to what can be obtainted on a living node with
erl ang: menmory().

1.5.4 Internal Table Information

Under the tags =hash_table:<table hame> and =index_table:<table name> is shown internal tables. These are
mostly of interest for runtime system developers.

1.5.5 Allocated Areas

Under the tag =allocated_areas is shown information similar to what can be obtained on a living node with
erl ang: system.info(allocated _areas).

1.5.6 Allocator

Under the tag =allocator :<A> is shown various information about allocator <A>. The information is similar to what
can be obtained on aliving node with er| ang: system i nfo({al | ocator, <A>}).For moreinformation,
seeasoerts_alloc(3).

1.5.7 Process Information

The Erlang crashdump contains a listing of each living Erlang process in the system. The following fields can exist
for aprocess:

=proc:<pid>
Heading. States the processidentifier.
State
The state of the process. This can be one of the following:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 23

1.5 How to Interpret the Erlang Crash Dumps

Scheduled
The process was scheduled to run but is currently not running ("in the run queue").

Waiting
The process was waiting for something (inr ecei ve).

Running
The process was currently running. If the BIF er | ang: hal t / 1 was called, thiswas the process calling
it.

Exiting
The process was on its way to exit.

Garbing
Thisis bad luck, the process was garbage collecting when the crash dump was written. The rest of the
information for this processis limited.

Suspended
The processis suspended, either by the BIF er | ang: suspend_pr ocess/ 1 or becauseit triesto write
to abusy port.

Registered name
The registered name of the process, if any.
Spawned as

The entry point of the process, that is, what function was referenced in the spawn or spawn_| i nk call that
started the process.

Last scheduled in for | Current call

The current function of the process. These fields do not always exist.
Spawned by

The parent of the process, that is, the process that executed spawn or spawn_| i nk.
Started

The date and time when the process was started.
M essage queue length

The number of messages in the process message queue.
Number of heap fragments

The number of allocated heap fragments.
Heap fragment data

Size of fragmented heap data. Thisis data either created by messages sent to the process or by the Erlang BIFs.
This amount depends on so many things that this field is utterly uninteresting.

Link list

Process | Ds of processes linked to this one. Can also contain ports. If process monitoring is used, thisfield also
tellsinwhich direction themonitoring isin effect. That is, alink "to" aprocesstellsyou that the "current” process
was monitoring the other, and alink "from" a process tells you that the other process was monitoring the current
one.

Reductions

The number of reductions consumed by the process.
Stack+heap

The size of the stack and heap (they share memory segment).

24 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

OldHeap

Thesize of the"old heap". The Erlang virtual machine uses generational garbage collection with two generations.
There is one heap for new data items and one for the data that has survived two garbage collections. The
assumption (which is amost always correct) is that data surviving two garbage collections can be "tenured" to
a heap more seldom garbage collected, as they will live for along period. This is a usual technique in virtua
machines. The sum of the heaps and stack together constitute most of the allocated memory of the process.

Heap unused, OldHeap unused
The amount of unused memory on each heap. Thisinformation is usually useless.
Memory

The total memory used by this process. This includes call stack, heap, and interna structures. Same as
erl ang: process_i nf o(Pi d, menory).

Program counter

The current instruction pointer. Thisis only of interest for runtime system devel opers. The function into which
the program counter points is the current function of the process.

CP

The continuation pointer, that is, the return address for the current call. Usually useless for other than runtime
system developers. This can be followed by the function into which the CP points, which is the function calling
the current function.

Arity

The number of live argument registers. The argument registersif any are live will follow. These can contain the
arguments of the function if they are not yet moved to the stack.

Internal State
A more detailed internal representation of the state of this process.

See aso section Process Data.

1.5.8 Port Information

This section lists the open ports, their owners, any linked processes, and the name of their driver or external process.

1.5.9 ETS Tables

This section contains information about all the ETS tablesin the system. The following fields are of interest for each
table:

=ets.<owner>
Heading. States the table owner (a process identifier).
Table
Theidentifier for thetable. If thetableisananed_t abl e, thisisthe name.
Name
The table name, regardiess of if itisanamed_t abl e or not.
Hash table, Buckets
If thetableisahashtable, that is, if itisnot an or der ed_set .

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 25

1.5 How to Interpret the Erlang Crash Dumps

Hash table, Chain Length

If thetableisahash table. Contains statistics about the table, such as the maximum, minimum, and average chain
length. Having a maximum much larger than the average, and a standard deviation much larger than the expected
standard deviation is a sign that the hashing of the terms behaves badly for some reason.

Ordered set (AVL tree), Elements
If thetableisan or der ed_set . (The number of elementsisthe same as the number of objectsin the table.)
Fixed
If thetableisfixedusing et s: saf e_fi xt abl e/ 2 or some internal mechanism.
Objects
The number of objectsin thetable.
Words
The number of words (usually 4 bytes/word) allocated to datain the table.
Type
Thetabletype, that is, set , bag, dubl i cat e_bag, or or der ed_set .
Compr essed
If the table was compressed.
Protection
The protection of the table.
Write Concurrency
Ifwrite_concurrency wasenabled for the table.
Read Concurrency

If read_concurrency was enabled for the table.

1.5.10 Timers

This section contains information about al the timers started with the BIFs er| ang: start _tiner/3 and
erl ang: send_aft er/ 3. Thefollowing fields exist for each timer:

=timer:<owner >

Heading. States the timer owner (a processidentifier), that is, the process to receive the message when the timer
expires.

M essage
The message to be sent.
Timeleft
Number of milliseconds left until the message would have been sent.

1.5.11 Distribution Information

If the Erlang node was alive, that is, set up for communicating with other nodes, this section lists the connections that
were active. The following fields can exist:

=node:<node_name>

The node name.

26 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.5 How to Interpret the Erlang Crash Dumps

no_distribution
If the node was not distributed.
=visible_node:<channel>

Heading for a visible node, that is, an alive node with a connection to the node that crashed. States the channel
number for the node.

=hidden_node:<channel>

Heading for a hidden node. A hidden node is the same as a visible node, except that it is started with the " -
hi dden" flag. States the channel number for the node.

=not_connected:<channel>

Heading for anode that was connected to the crashed node earlier. References (that is, process or port identifiers)
to the not connected node existed at the time of the crash. States the channel number for the node.

Name

The name of the remote node.
Controller

The port controlling communication with the remote node.
Creation

An integer (1-3) that together with the node name identifies a specific instance of the node.
Remote monitoring: <local_proc> <remote_proc>

Thelocal process was monitoring the remote process at the time of the crash.
Remotely monitored by: <local_proc> <remote proc>

The remote process was monitoring the local process at the time of the crash.
Remotelink: <local_proc> <remote_proc>

A link existed between the local process and the remote process at the time of the crash.

1.5.12 Loaded Module Information

This section contains information about all loaded modules.
First, the memory use by the loaded code is summarized:
Current code

Code that is the current latest version of the modules.
Old code

Code where there exists a newer version in the system, but the old version is not yet purged.
The memory useisin bytes.
Then, all loaded modules are listed. The following fields exist:
=mod:<module_name>

Heading. States the module name.
Current size

Memory use for the loaded code, in bytes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 27

1.5 How to Interpret the Erlang Crash Dumps

Old size

Memory use for the old codg, if any.
Current attributes

Module attributes for the current code. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Old attributes

Module attributes for the old code, if any. Thisfield is decoded when looked at by the Crashdump Viewer tool.
Current compilation info

Compilation information (options) for the current code. Thisfield is decoded when looked at by the Crashdump
Viewer tool.

Old compilation info

Compilation information (options) for theold code, if any. Thisfield isdecoded when looked at by the Crashdump
Viewer tool.

1.5.13 Fun Information
This section lists al funs. The following fields exist for each fun:
=fun

Heading.
Module

The name of the module where the fun was defined.
Uniq, Index

Identifiers.
Address

The address of the fun's code.
Native address

The address of the fun's code when HiPE is enabled.
Refc

The number of references to the fun.

1.5.14 Process Data

For each processthereisat least one=proc_stack and one =proc_heap tag, followed by the raw memory information
for the stack and heap of the process.

For each process there is also a =proc_messages tag if the process message queue is non-empty, and a
=proc_dictionary tag if the process dictionary (the put / 2 and get / 1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. Y ou can then see the stack dump, the
message queue (if any), and the dictionary (if any).

The stack dump is a dump of the Erlang process stack. Most of the live data (that is, variables currently in use) are
placed on the stack; thus this can be interesting. One has to "guess' what is what, but as the information is symbolic,
thorough reading of thisinformation can be useful. Asan example, we can find the state variabl e of the Erlang primitive
loader online (5) and (6) in the following example:

28 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) 3cac44 Return addr 0x13BF58 (<terminate process normally>)

(2) vy(0) ["/view/siri r10 dev/clearcase/otp/erts/lib/kernel/ebin",

(3) "/view/siri r10_dev/clearcase/otp/erts/lib/stdlib/ebin"]

(4) y(1) <0.1.0>

(5) vy(2) {state, [],none,#Fun<erl prim loader.6.7085890>,undefined,#Fun<erl prim loader.7.9000327>,
(6) #Fun<erl prim loader.8.116480692>,#Port<0.2>,infinity,#Fun<erl prim loader.9.10708760>}
(7) y(3) infinity

When interpreting the data for a process, it is helpful to know that anonymous function objects (funs) are given the
following:

e A name constructed from the name of the function in which they are created
* A number (starting with 0) indicating the number of that fun within that function

1.5.15 Atoms

This section presents all the atoms in the system. Thisis only of interest if one suspects that dynamic generation of
atoms can be a problem, otherwise this section can be ignored.

Notice that the last created atom is shown first.

1.5.16 Disclaimer

The format of the crash dump evolves between OTP rel eases. Some information described here may not apply to your
version. A description like thiswill never be complete; it is meant as an explanation of the crash dump in genera and
as ahelp when trying to find application errors, not as a compl ete specification.

1.6 How to Implement an Alternative Carrier for the Erlang
Distribution

This section describes how to implement an alternative carrier protocol for the Erlang distribution. The distribution is
normally carried by TCP/IP. Here is explained a method for replacing TCP/IP with another protocol.

The sectionisastep-by-step explanation of theuds _di st exampleapplication (inthe Kernel applicationexanpl es
directory). Theuds_di st application implements distribution over Unix domain sockets and is written for the Sun
Solaris 2 operating environment. The mechanisms are however general and apply to any operating system Erlang runs
on. The reason the C code is not made portable, is simply readability.

Note:

This section was written along time ago. Most of it is still valid, but some things have changed since then. Most
notably is the driver interface. Some updates have been made to the documentation of the driver presented here,
but more can be done and is planned for the future. The reader is encouraged to read the er | _dri ver and
dri ver _entry documentation also.

1.6.1 Introduction

To implement anew carrier for the Erlang distribution, the main steps are as follows.

Writing an Erlang Driver

First, the protocol must be available to the Erlang machine, which involves writing an Erlang driver. A port program
cannot be used, an Erlang driver isrequired. Erlang drivers can be:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 29

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

« Statically linked to the emulator, which can be an alternative when using the open source distribution of Erlang, or

« Dynamically loaded into the Erlang machines address space, which isthe only aternativeif aprecompiled version
of Erlang isto be used

Writing an Erlang driver is not easy. The driver is written as some callback functions called by the Erlang emulator
when datais sent to the driver, or the driver has any data available on afile descriptor. Asthe driver callback routines
execute in the main thread of the Erlang machine, the callback functions can perform no blocking activity whatsoever.
The callbacks are only to set up file descriptors for waiting and/or read/write available data. All 1/0 must be non-
blocking. Driver callbacks are however executed in sequence, why a global state can safely be updated within the
routines.

Writing an Erlang Interface for the Driver

When the driver is implemented, one would preferably write an Erlang interface for the driver to be able to test the
functionality of the driver separately. This interface can then be used by the distribution module, which will cover the
details of the protocol from thenet _ker nel .

The easiest pathisto mimicthei net andi net _t cp interfaces, but not much functionality in those modules needs
to beimplemented. In the example application, only afew of the usual interfaces are implemented, and they are much
simplified.

Writing a Distribution Module

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution module can
be written. The distribution module is a module with well-defined callbacks, much likeagen_ser ver (thereisno
compiler support for checking the callbacks, though). This module implements:

» Thedetails of finding other nodes (that is, talking to eprd or something similar)

e Creating alisten port (or similar)

» Connecting to other nodes

» Performing the handshakes/cookie verification

Thereishowever autility module, di st _ut i | , which does most of the hard work of handling handshakes, cookies,

timers, and ticking. Using di st _ut i | makes implementing a distribution module much easier and that is done in
the example application.

Creating Boot Scripts

Thelast step isto create boot scripts to make the protocol implementation available at boot time. The implementation
can be debugged by starting the distribution when all the system is running, but in areal system the distribution is to
start very early, why a boot script and some command-line parameters are necessary.

This step also impliesthat the Erlang code in the interface and distribution modulesis written in such away that it can
be run in the startup phase. In particular, there can be no callsto the appl i cat i on module or to any modules not
loaded at boot time. That is, only Ker nel , STDLI B, and the application itself can be used.

1.6.2 The Driver

Although Erlang driversin general can be beyond the scope of this section, a brief introduction seemsto bein place.

Drivers in General

An Erlang driver is a native code module written in C (or assembler), which serves as an interface for some special
operating system service. Thisis a general mechanism that is used throughout the Erlang emulator for all kinds of 1/
O. An Erlang driver can be dynamically linked (or loaded) to the Erlang emulator at runtime by usingtheer | _ddl |
Erlang module. Some of the driversin OTP are however statically linked to the runtime system, but that is more an
optimization than a necessity.

30 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

Thedriver datatypes and the functions availableto the driver writer are defined in header fileer | _dri ver . h seated
in Erlang'sinclude directory. Seethe erl_driver documentation for details of which functions are available.

When writing adriver to make a communications protocol availableto Erlang, one should know just about everything
worth knowing about that particular protocol. All operation must be non-blocking and all possible situations are to be
accounted for in the driver. A non-stable driver will affect and/or crash the whole Erlang runtime system.

The emulator calls the driver in the following situations:

e Whenthedriver isloaded. This callback must have a special name and inform the emulator of what callbacks are
to be used by returning a pointer to aEr | Dr VENt r y struct, which isto be properly filled in (see below).

* When aport to the driver is opened (by aopen_por t cal from Erlang). This routine is to set up internal data
structures and return an opaque data entity of thetype Er | Dr vDat a, which is a datatype large enough to hold a
pointer. The pointer returned by thisfunction isthe first argument to all other callbacks concerning this particular
port. Itisusually called the port handle. The emulator only stores the handle and does never try to interpret it, why
it can be virtually anything (anything not larger than a pointer that is) and can point to anything if it isa pointer.
Usually this pointer refers to a structure holding information about the particular port, as it does in the example.

* When an Erlang process sends data to the port. The data arrives as a buffer of bytes, the interpretation is not
defined, but is up to the implementor. This callback returns nothing to the caller, answers are sent to the caller
as messages (using aroutine called dr i ver _out put availableto all drivers). Thereisaso away totakina
synchronous way to drivers, described below. There can be an additional callback function for handling data that
isfragmented (sent in adeep io-list). That interface gets the datain aform suitable for Unix wr i t ev rather than
in asingle buffer. There is no need for adistribution driver to implement such a callback, so we will not.

* When afile descriptor is signaled for input. This callback is called when the emulator detects input on a file
descriptor that the driver has marked for monitoring by using the interface dr i ver _sel ect . The mechanism
of driver select makesit possible to read non-blocking from file descriptors by calling dr i ver _sel ect when
reading is needed, and then do the reading in this callback (when reading is possible). The typical scenario is
that dri ver _sel ect iscalled when an Erlang process orders aread operation, and that this routine sends the
answer when data is available on the file descriptor.

* When afile descriptor is signaled for output. This callback is called in a similar way as the previous, but when
writing to a file descriptor is possible. The usual scenario is that Erlang orders writing on a file descriptor and
that the driver callsdr i ver _sel ect . When the descriptor is ready for output, this callback is called and the
driver can try to send the output. Queuing can be involved in such operations, and there are convenient queue
routines available to the driver writer to use.

When aport isclosed, either by an Erlang process or by the driver calling one of thedri ver _fai |l ure_XXX
routines. This routine is to clean up everything connected to one particular port. When other callbacks call a
driver _fail ure_XXXroutine, thisroutineisimmediately called. The callback routine issuing the error can
make no more use of the data structures for the port, as this routine surely has freed all associated data and closed
all file descriptors. If the queue utility available to driver writer is used, this routine is however not called until
the queue is empty.

* When an Erlang process calls er | ang: port _contr ol / 3, which is asynchronous interface to drivers. The
control interface is used to set driver options, change states of ports, and so on. This interface is used alot in
the example.

e When atimer expires. The driver can set timers with the function dri ver _set _ti ner. When such timers
expire, a specific callback function is called. No timers are used in the example.

e When the whole driver is unloaded. Every resource allocated by the driver isto be freed.

The Data Structures of the Distribution Driver

The driver used for Erlang distribution is to implement areliable, order maintaining, variable length packet-oriented
protocol. All error correction, resending and such need to be implemented in the driver or by the underlying
communications protocol. If the protocol is stream-oriented (as is the case with both TCP/IP and our streamed Unix
domain sockets), some mechanism for packaging is needed. We will use the simple method of having a header of four

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 31

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

bytes containing the length of the package in a big-endian 32-bit integer. As Unix domain sockets only can be used
between processes on the same machine, we do not need to code the integer in some special endianess, but we will
do it anyway because in most situation you need to do it. Unix domain sockets are reliable and order maintaining, so

we do not need to implement resends and such in the driver.

We start writing the example Unix domain socketsdriver by declaring prototypesandfillinginastaticEr | Dr vEnt ry

structure:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <fcntl.h>

CQLOVWoo~NOoOUE,WNRE

(11) #define HAVE_UIO H
(12) #include "erl driver.h"

/*
** Interface routines
*/

AAAAAAAAAAA
NNNNREHER R RE R
WNFHRoOoOVWLONOULB W
o e o o o e e s D

(24) /* The driver entry */

(25)

(26) NULL,

(27) uds start,

(28) uds stop,

(29) uds_command,

(30) uds_input,

(31)

(32) uds output,

(33)

(34) "uds drv",

(35)

(36) uds finish,

(37) NULL,

(38) uds control,

(39) NULL,

(40) NULL,

(41) NULL,

(42) NULL,

(43) NULL,

(44) NULL,

(45) ERL_DRV_EXTENDED_MARKER,
(46) ERL_DRV_EXTENDED_MAJOR_VERSION,
(47) ERL_DRV_EXTENDED_MINOR VERSION,
(48) ERL_DRV_FLAG_SOFT_BUSY,
(49)

(50) NULL,

(51) NULL,

static ErlDrvEntry uds driver entry = {

/*
/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

static ErlDrvData uds start(ErlDrvPort port, char *buff);
static void uds stop(ErlDrvData handle);
static void uds command(ErlDrvData handle, char *buff, int bufflen);
static void uds input(ErlDrvData handle, ErlDrvEvent event);
static void uds output(ErlDrvData handle, ErlDrvEvent event);
static void uds finish(void);
static int uds control(ErlDrvData handle, unsigned int command,
char* buf, int count, char** res, int res size);

init, N/A */

start, called when port is opened */
stop, called when port is closed */
output, called when erlang has sent */
ready input, called when input
descriptor ready */

ready output, called when output
descriptor ready */

char *driver name, the argument

to open port */

finish, called when unloaded */

void * that is not used (BC) */
control, port control callback */
timeout, called on timeouts */
outputv, vector output interface */
ready async callback */

flush callback */

call callback */

event callback */

Extended driver interface marker */
Major version number */

Minor version number */

Driver flags. Soft busy flag is
required for distribution drivers */
Reserved for internal use */

process exit callback */

32 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(52) NULL /* stop_select callback */

On line 1-10 the OS headers needed for the driver are included. Asthisdriver iswritten for Solaris, we know that the
header ui 0. h exists. Sothe preprocessor variable HAVE_UlI O_Hcan bedefined beforeer | _dri ver . hisincluded
on line 12. The definition of HAVE_Ul O_H will make the 1/0O vectors used in Erlang's driver queues to correspond
to the operating systems ditto, which is very convenient.

On line 16-23 the different callback functions are declared ("forward declarations’).

The driver structure is similar for statically linked-in drivers and dynamically loaded. However, some of the fields
are to be left empty (that is, initialized to NULL) in the different types of drivers. Thefirst field (thei ni t function
pointer) is always left blank in a dynamically loaded driver, see line 26. NULL on line 37 is always to be there, the
field isno longer used and is retained for backward compatibility. No timers are used in this driver, why no callback
for timers is needed. The out put v field (line 40) can be used to implement an interface similar to Unix wri t ev
for output. The Erlang runtime system could previously not use out put v for the distribution, but it can as from
ERTSA5.7.2. Asthisdriver waswritten before ERTS 5.7.2 it does not use the out put v callback. Using the out put v
callback is preferred, asit reduces copying of data. (We will however use scatter/gather |/O internally in the driver.)

As from ERTS 5.5.3 the driver interface was extended with version control and the possibility to pass capability
information. Capability flags are present on line 48. As from ERTS 5.7.4 flag ERL_DRV_FLAG SOFT_BUSY is
required for drivers that are to be used by the distribution. The soft busy flag implies that the driver can handle cals
to the out put and out put v calbacks athough it has marked itself as busy. This has always been a requirement
on drivers used by the distribution, but no capability information has been available about this previously. For more
information. see er| _dri ver:set _busy port()).

Thisdriver waswritten before the runtime system had SMP support. Thedriver will still function in the runtime system
with SMP support, but performance will suffer from lock contention on the driver lock used for the driver. This can be
alleviated by reviewing and perhaps rewriting the code so that each instance of the driver safely can executein parallel.
When instances safely can execute in paralldl, it is safe to enable instance-specific locking on the driver. Thisis done
by passing ERL_DRV_FLAG USE_PORT_LOCKI NGasadriver flag. Thisisleft as an exercise for the reader.

Thus, the defined callbacks are as follows:
uds_start
Must initiate data for a port. We do not create any sockets here, only initialize data structures.
uds_stop
Called when aport is closed.
uds_comand

Handles messages from Erlang. The messages can either be plain data to be sent or more subtle instructions to
the driver. Thisfunction is here mostly for data pumping.

uds_i nput

Called when there is something to read from a socket.
uds_out put

Called when it is possible to write to a socket.
uds_finish

Called when the driver is unloaded. A distribution driver will never be unloaded, but we include this for
completeness. To be able to clean up after oneself is always a good thing.

uds_control

The erl ang: port _cont rol / 3 calback, which isused alot in thisimplementation.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 33

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The portsimplemented by this driver operate in two major modes, named command and dat a. In conmmand mode,
only passive reading and writing (like gen_t cp: r ecv/gen_t cp: send) can be done. The port is in this mode
during the distribution handshake. When the connection is up, the port is switched to dat a mode and al data is
immediately read and passed further to the Erlang emulator. In dat a mode, no data arriving to uds_conmand is
interpreted, only packaged and sent out on the socket. Theuds_cont r ol callback doesthe switching between those
two modes.

While net _ker nel informs different subsystems that the connection is coming up, the port is to accept data to
send. However, the port should not receive any data, to avoid that data arrives from another node before every kernel
subsystem is prepared to handleit. A third mode, named i nt er medi at e, isused for thisintermediate stage.

An enum is defined for the different types of ports:

(1) typedef enum {

(2) portTypeUnknown, /* An uninitialized port */

(3) portTypelListener, /* A listening port/socket */

(4) portTypeAcceptor, /* An intermediate stage when accepting
(5) on a listen port */

(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypelntermediate, /* A connected open port in special

(9) half active mode */

(10) portTypeData /* A connected open port in data mode */
(11) } PortType;

The different types are as follows:
port TypeUnknown

The type a port has when it is opened, but not bound to any file descriptor.
port TypelLi st ener

A port that is connected to a listen socket. This port does not do much, no data pumping is done on this socket,
but read datais available when one is trying to do an accept on the port.

port TypeAccept or

This port is to represent the result of an accept operation. It is created when one wants to accept from a listen
socket, and it is converted to apor t Ty peComrand when the accept succeeds.

port TypeConnect or

Very similar to port TypeAccept or, an intermediate stage between the request for a connect operation and
that the socket is connected to an accepting ditto in the other end. When the sockets are connected, the port
switches typeto por t TypeCommand.

port TypeConmand

A connected socket (or accepted socket) in command mode mentioned earlier.
port Typel nt ermedi at e

The intermediate stage for a connected socket. Thereis to be no processing of input for this socket.
port TypeDat a

The mode where data is pumped through the port and the uds_conmmand routine regards every call as a call
where sending iswanted. In thismode, all input availableisread and sent to Erlang when it arrives on the socket,
much like in the active mode of agen_t cp socket.

34 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

We study the state that is needed for the ports. Notice that not all fields are used for al types of ports. Some space
could be saved by using unions, but that would clutter the code with multiple indirections, so here is used one struct
for al types of ports, for readability:

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds data {

(4) int fd; /* File descriptor */

(5) ErlDrvPort port; /* The port identifier */

(6) int lockfd; /* The file descriptor for a lock file in
(7) case of listen sockets */

(8) Byte creation; /* The creation serial derived from the
(9) lock file */

(10) PortType type; /* Type of port */

(11) char *name; /* Short name of socket for unlink */

(12) Word sent; /* Bytes sent */

(13) Word received; /* Bytes received */

(14) struct uds data *partner; /* The partner in an accept/listen pair */
(15) struct uds data *next; /* Next structure in list */

(16) /* The input buffer and its data */

(17) int buffer size; /* The allocated size of the input buffer */
(18) int buffer pos; /* Current position in input buffer */
(19) int header pos; /* Where the current header is in the

(20) input buffer */

(21) Byte *buffer; /* The actual input buffer */

(22) } UdsData;

This structure is used for all types of ports athough some fields are useless for some types. The least memory
consuming solution would be to arrange this structure as a union of structures. However, the multiple indirections in
the code to access afield in such a structure would clutter the code too much for an example.

Thefieldsin the structure are as follows:
fd

Thefile descriptor of the socket associated with the port.
port

The port identifier for the port that this structure corresponds to. It is needed for most dr i ver _ XXX calls from
the driver back to the emulator.

| ockfd
If the socket is alisten socket, we use a separate (regular) file for two purposes:

* Wewant alocking mechanism that gives no race conditions, to be sure if another Erlang node uses the listen
socket name we require or if the fileis only left there from a previous (crashed) session.

e Westorethecr eat i on seria number in the file. The cr eat i on isanumber that is to change between
different instances of different Erlang emulators with the same name, so that process identifiers from one
emulator do not become valid when sent to a new emulator with the same distribution name. The creation
can be from 0 through 3 (two bits) and is stored in every process identifier sent to another node.

In a system with TCP-based distribution, this data is kept in the Erlang port mapper daemon (epnd),
which is contacted when a distributed node starts. The lock file and a convention for the UDS listen socket's
name remove the need for eprrd when using this distribution module. UDS is always restricted to one host,
why avoiding a port mapper is easy.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 35

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

creation

The creation number for alisten socket, which is calculated as (the value found in the lock-file + 1) rem 4. This
creation value is also written back into the lock file, so that the next invocation of the emulator finds our value
inthefile.

type
The current type/state of the port, which can be one of the values declared above.
name

The name of the socket file (the path prefix removed), which allows for deletion (unl i nk) when the socket is
closed.

sent

How many bytesthat have been sent over the socket. This can wrap, but that is no problem for the distribution, as
the Erlang distribution is only interested in if this value has changed. (The Erlang net _ker nel ti cker uses
this value by calling the driver to fetch it, which is done through the er | ang: port _contr ol / 3 routine.)

recei ved
How many bytes that are read (received) from the socket, used in similar waysassent .
part ner

A pointer to another port structure, which is either the listen port from which this port is accepting a connection
or conversely. The "partner relation” is aways bidirectional.

next

Pointer to next structure in a linked list of all port structures. This list is used when accepting connections and
when the driver is unloaded.

buf f er _si ze, buf f er _pos, header _pos, buf fer

Data for input buffering. For details about the input buffering, see the source code in directory ker nel /
exanpl es. That certainly goes beyond the scope of this section.

Selected Parts of the Distribution Driver Implementation

The implemenation of the distribution driver is not completely covered here, details about buffering and other things
unrelated to driver writing are not explained. Likewise are some peculiarities of the UDS protocol not explained in
detail. The chosen protocol is not important.

Prototypes for the driver callback routines can be found intheer | _dri ver . h header file.

The driver initiaization routine is (usually) declared with a macro to make the driver easier to port between different
operating systems (and flavors of systems). This is the only routine that must have a well-defined name. All other
callbacks are reached through the driver structure. The macro to use is named DRI VER_| NI T and takes the driver
name as parameter:

(1) /* Beginning of linked list of ports */
(2) static UdsData *first data;

3) DRIVER INIT(uds drv)

(

(4) {

(5) first data = NULL;

(6) return &uds driver entry;
(7) }

36 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

The routine initializes the single global data structure and returns a pointer to the driver entry. The routine is called
whener| _ddl | : 1 oad_dri ver iscaled from Erlang.

Theuds_st art routineis called when a port is opened from Erlang. In this case, we only alocate a structure and
initialize it. Creating the actual socket isleft to theuds_comand routine.

(1) static ErlDrvData uds start(ErlDrvPort port, char *buff)
(2){

(3) UdsData *ud;

(4)

(5) ud = ALLOC(sizeof(UdsData));
(6) ud->fd = -1;

(7) ud->lockfd = -1;

(8) ud->creation = 0;

(9) ud->port = port;

(10) ud->type = portTypeUnknown;
(11) ud->name = NULL;

(12) ud->buffer size = 0;

(13) ud->buffer pos = 0;

(14) ud->header pos = 0;

(15) ud->buffer = NULL;

(16) ud->sent = 0;

(17) ud->received = 0;

(18) ud->partner = NULL;

(19) ud->next = first data;

(20) first data = ud;

(21)

(22) return((EriDrvData) ud);
(23) }

Every data item is initialized, so that no problems arise when a newly created port is closed (without there being
any corresponding socket). Thisroutineis called when open_port ({spawn, "uds_drv"},[]) iscaledfrom
Erlang.

Theuds_command routine is the routine called when an Erlang process sends data to the port. This routine handles
all asynchronous commands when the port isin command mode and the sending of all datawhen the portisin dat a
mode;

(1) static void uds command(ErlDrvData handle, char *buff, int bufflen)

(2){

(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeData || ud->type == portTypeIntermediate) {
(5) DEBUGF (("Passive do send %d",bufflen));

(6) do send(ud, buff + 1, bufflen - 1); /* XXX */
(7) return;

(8) }

(9) if (bufflen == 0) {

(10) return;

(11) }

(12) switch (*buff) {

(13) case 'L':

(14) if (ud->type != portTypeUnknown) {

(15) driver failure posix(ud->port, ENOTSUP);
(16) return;

(17) }

(18) uds command listen(ud,buff,bufflen);

(19) return;

(20) case 'A':

(21) if (ud->type != portTypeUnknown) {

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 37

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

driver failure posix(ud->port, ENOTSUP);
return;
}
uds_command_accept(ud,buff,bufflen);
return;
case 'C':
if (ud->type != portTypeUnknown) {
driver failure posix(ud->port, ENOTSUP);
return;
}
uds_command_connect (ud, buff,bufflen);
return;
case 'S':
if (ud->type != portTypeCommand) {
driver failure posix(ud->port, ENOTSUP);
return;
¥
do_send(ud, buff + 1, bufflen - 1);
return;
case 'R':
if (ud->type != portTypeCommand) {
driver failure posix(ud->port, ENOTSUP);
return;
¥
do _recv(ud);
return;
default:
return;
3

VGUELERERARDEDEDDEDWWLWWWWWWWWWNNNNNNNDN
HOWOWONOURARWNHOOWONOURMRWNEHOOWONOULEA WN

The command routine takes three parameters; the handle returned for the port by uds_st ar t , which is a pointer to
the internal port structure, the data buffer, and the length of the data buffer. The buffer is the data sent from Erlang
(alist of bytes) converted to an C array (of bytes).

If Erlang sends, for example, the list [$a, $b, $c] to the port, the buf f | en variableis 3 and the buf f variable
contains{'a','b','c'} (noNULL termination). Usually the first byte is used as an opcode, which isthe case in
this driver too (at least when the port isin command mode). The opcodes are defined as follows:

'L' <socket nanme>
Creates and listens on socket with the specified name.
"A' <listen nunber as 32-bit big-endian>

Accepts from the listen socket identified by the specified identification number. The identification number is
retrieved with theuds_cont r ol routine.

' C <socket name>
Connects to the socket named <socket name>.
'S <dat a>

Sends the data <data> on the connected/accepted socket (in conmmand mode). The sending is acknowledged
when the data has | eft this process.

'R
Receives one packet of data.

"One packet of data" in command ' R can be explained as follows. This driver always sends data packaged with a
4 byte header containing a big-endian 32-bit integer that represents the length of the data in the packet. There is no
need for different packet sizes or some kind of streamed mode, as this driver is for the distribution only. Why is the

38 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

header word coded explicitly in big-endian when a UDS socket is local to the host? It is good practice when writing
adistribution driver, as distribution in practice usually crosses the host boundaries.

On line 4-8 is handled the case where the port isin dat a mode or i nt er medi at e mode and the remaining routine
handles the different commands. The routine usesthe dri ver _f ai | ur e_posi x() routine to report errors (see,
for example, line 15). Notice that the failure routines make a call to the uds_st op routine, which will remove the
internal port data. The handle (and the casted handle ud) is therefore invalid pointers after adri ver _fail ure
call and we should return immediately. The runtime system will send exit signalsto all linked processes.

The uds_i nput routine is called when data is available on a file descriptor previousy passed to the
driver_sel ect routine. This occurs typically when a read command is issued and no data is available. The
do_recv routineisasfollows:

(1) static void do recv(UdsData *ud)

(2){

(3) int res;

(4) char *ibuf;

(5) for(;;) {

(6) if ((res = buffered read package(ud,&ibuf)) < 0) {

(7) if (res == NORMAL READ FAILURE) {

(8) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ, 1);
(9) } else {

(10) driver failure eof(ud->port);

(11) }

(12) return;

(13) b

(14) /* Got a package */

(15) if (ud->type == portTypeCommand) {

(16) ibuf[-1] = 'R'; /* There is always room for a single byte
(17) opcode before the actual buffer

(18) (where the packet header was) */

(19) driver output(ud->port,ibuf - 1, res + 1);

(20) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,0);
(21) return;

(22) } else {

(23) ibuf[-1] = DIST MAGIC RECV_TAG; /* XXX */

(24) driver output(ud->port,ibuf - 1, res + 1);

(25) driver select(ud->port, (ErlDrvEvent) ud->fd, DO READ,1);
(26) b

(27))

(28) 1}

The routine tries to read data until a packet is read or the buf f er ed_r ead_package routine returns a
NORMAL_READ FAI LURE (an internally defined constant for the module, which means that the read operation
resulted in an EAOULDBL OCK). If the port isin command mode, the reading stops when one package is read. If the
port isin dat a mode, the reading continues until the socket buffer is empty (read failure). If no more data can be
read and moreiswanted (which is always the case when the socket isin dat a mode), dri ver _sel ect iscalledto
make the uds_i nput callback be called when more datais available for reading.

When the port isin dat a mode, all datais sent to Erlang in aformat that suits the distribution. In fact, the raw data
will never reach any Erlang process, but will be translated/interpreted by the emulator itself and then delivered in the
correct format to the correct processes. In the current emulator version, received data is to be tagged with a single
byte of 100. That iswhat the macro DI ST_MAG C_RECV_TAGis defined to. The tagging of data in the distribution
can be changed in the future.

Theuds_i nput routine handles other input events (like non-blocking accept), but most importantly handle data
arriving at the socket by callingdo_r ecv:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 39

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(1) static void uds_input(ErlDrvData handle, ErlDrvEvent event)

(2){
(3) UdsData *ud = (UdsData *) handle;

if (ud->type == portTypelListener) {
UdsData *ad = ud->partner;
struct sockaddr un peer;
int pl = sizeof(struct sockaddr un);
int fd;

(o BL N o) IO, N

if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
if (errno != EWOULDBLOCK) {
driver failure posix(ud->port, errno);
return;
}
return;
}
SET _NONBLOCKING(fd);
ad->fd = fd;

ad->partner = NULL;
ad->type = portTypeCommand;
ud->partner = NULL;
driver select(ud->port, (ErlDrvEvent) ud->fd, DO _READ, 0);
driver_ output(ad->port, "Aok",3);
return;
)

do_recv(ud);

AAAAAAAAAAAAAAAAAA
NNNNNNNREERRERRRBR R B2

OUPA,WNRFROOONOULR WNEF OO
i S o) e S S o e) o e S e e e

The important lineisthe last line in the function: thedo_r ead routineis called to handle new input. The remaining
function handles input on a listen socket, which means that it is to be possible to do an accept on the socket, which
is also recognized as aread event.

The output mechanisms are similar to the input. Thedo_send routineis asfollows:

tatic void do_send(UdsData *ud, char *buff, int bufflen)

~ W0n

1)

2)

3) char header[4];

4) int written;

5) SysIOVec iov[2];

6) ErlIOVec eio;

7) ErlDrvBinary *binv[] = {NULL,NULL};

—_~ e~~~ o~ —~ —~

put packet length(header, bufflen);
iov[0].iov _base = (char *) header;
iov[0].iov_len = 4;
iov[1l].iov_base = buff;
iov[1l].iov_len = bufflen;
eio.iov = iov;
eio.binv = binv;
eio.vsize = 2;
eio.size = bufflen + 4;
written = 0;
if (driver sizeq(ud->port) == 0) {
if ((written = writev(ud->fd, iov, 2)) == eio.size) {
ud->sent += written;
if (ud->type == portTypeCommand) {
driver output(ud->port, "Sok", 3);
}

return;
} else if (written < 0) {

P e e e e e e e

40 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

if (errno != EWOULDBLOCK) {
driver failure eof(ud->port);
return;

} else {

written = 0;

}
} else {

ud->sent += written;
}

/* Enqueue remaining */
}
driver enqv(ud->port, &eio, written);
send out queue(ud);

WWWWWwWwwWwwwWwNNNN
OCONOUEAWNREREOOLONO

This driver uses the wr i t ev system call to send data onto the socket. A combination of wri t ev and the driver
output queuesisvery convenient. AnEr | | OVec structurecontainsaSys| OVec (whichisequivalenttothest r uct

i ovec structuredefinedinui 0. h. TheEr | | OVec also containsan array of Er | Dr vBi nar y pointers, of the same
length asthe number of buffersin thel/O vector itself. One can usethisto allocate the binariesfor the queue "manually”
in the driver, but here the binary array isfilled with NULL values (line 7). The runtime system then allocates its own
bufferswhendri ver _enqv iscalled (line 37).

Theroutinebuildsan I/O vector containing the header bytes and the buffer (the opcode has been removed and the buffer
length decreased by the output routine). If the queue is empty, we write the data directly to the socket (or at least try
to). If any dataisleft, it isstored in the queue and then we try to send the queue (line 38). An acknowledgement is sent
when the messageisdelivered completely (line22). Thesend_out _queue sends acknowledgementsif the sending
is completed there. If the port isin conmand mode, the Erlang code serializes the send operations so that only one
packet can bewaiting for delivery at atime. Therefore the acknowledgement can be sent whenever the queue isempty.

Thesend_out _queue routineisasfollows:

static int send out queue(UdsData *ud)
{
for(;;) {
int vlen;
SysIOVec *tmp = driver peekq(ud->port, &vlen);
int wrote;

if (tmp == NULL) {
driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
if (ud->type == portTypeCommand) {

}
}
driver deq(ud->port, wrote);
ud->sent += wrote;

CONOUAWNRFRFOOONOUUARWNROOVONOULD WN R

1 driver output(ud->port, "Sok", 3);

1 }

1 return 0;

1 }

1 if (vlen > IO VECTOR MAX) {

1 vlen = I0 VECTOR MAX;

1 }

1 if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
1 if (errno == EWOULDBLOCK) {

1 driver_select(ud->port, (ErlDrvEvent) ud->fd,
2 DO WRITE, 1);

2 return 0;

2 } else {

2 driver failure eof(ud->port);

2 return -1;

2

2

2

2

2

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 41

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(30) }

We simply pick out an 1/0 vector from the queue (which is the whole queue asa Sys| Ovec). If the 1/O vector istoo
long (I O_VECTOR_MAX is defined to 16), the vector length is decreased (line 15), otherwisethewr i t ev call (line
17) fails. Writing is tried and anything written is dequeued (line 27). If the write fails with EAOULDBL OCK (notice
that all sockets are in non-blocking mode), dri ver _sel ect iscalled to maketheuds_out put routine be called
when there is space to write again.

We continue trying to write until the queue is empty or the writing blocks.
Theroutine aboveis called from the uds_out put routine:

tatic void uds output(ErlDrvData handle, ErlDrvEvent event)

~ 0n

1)
2)
3) UdsData *ud = (UdsData *) handle;

4) if (ud->type == portTypeConnector) {

5) ud->type = portTypeCommand;

6) driver select(ud->port, (ErlDrvEvent) ud->fd, DO WRITE, 0);
7) driver output(ud->port, "Cok",3);

8) return;

9))

0)

1)

send _out queue(ud);

—~ e~~~ o~~~ o~~~ —~

Theroutineissimple: it first handles the fact that the output select will concern a socket in the business of connecting
(and the connecting blocked). If the socket is in a connected state, it simply sends the output queue. This routine is
called when it is possible to write to a socket where we have an output queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface caled when Erlang calls
erl ang: port_control /3. Only thisinterface can control the driver when it isin dat a mode. It can be called
with the following opcodes:

'C

Sets port in comrand mode.

Setsportini nt er medi at e mode.

Setsport in dat a mode.

Getsidentification number for listen port. Thisidentification number is used in an accept command to the driver.
It isreturned as a big-endian 32-bit integer, which isthe file identifier for the listen socket.

Gets statistics, whichisthe number of bytesreceived, the number of bytes sent, and the number of bytespendingin
the output queue. This datais used when the distribution checks that a connection isalive (ticking). The statistics
isreturned as three 32-bit big-endian integers.

Sends a tick message, which is a packet of length 0. Ticking is done when the port is in dat a mode, so the
command for sending data cannot be used (besides it ignores zero length packages in conmand mode). Thisis
used by the ticker to send dummy data when no other traffic is present.

42 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

Note: It is important that the interface for sending ticks is not blocking. This implementation uses
erl ang: port_control /3, which does not block the caler. If erl ang: port_conmand is used, use
erl ang: port_comrand/ 3 andpass[f or ce] asoptionlist; otherwisethe caller can be blocked indefinitely
on abusy port and prevent the system from taking down a connection that is not functioning.

'R
Gets creation number of alisten socket, which is used to dig out the number stored in the lock file to differentiate
between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to alocate its own buffer if the provided one is
too small. Theuds_cont r ol codeisasfollows:

static int uds control(ErlDrvData handle, unsigned int command,
char* buf, int count, char** res, int res size)

{
/* Local macro to ensure large enough buffer. */
#define ENSURE(N)
do {
if (res size < N) {
*res = ALLOC(N);

s

QUOVWoOoO~NOUE WN R

=

¥
} while(0)

—
=
=

~

UdsData *ud = (UdsData *) handle;

switch (command) {
case 'S':
{
ENSURE(13) ;
**res = 0;
put packet length((*res) + 1, ud->received);
put packet length((*res) + 5, ud->sent);
put packet length((*res) + 9, driver sizeq(ud->port));
return 13;
b
case 'C':
if (ud->type < portTypeCommand) {
return report control error(res, res size, "einval");
b

ud->type = portTypeCommand;
driver select(ud->port, (ErlDrvEvent) ud->fd, DO _READ, 0);
ENSURE (1) ;
**res = 0;
return 1;
case 'I':
if (ud->type < portTypeCommand) {
return report control error(res, res size, "einval");
b

ud->type = portTypelntermediate;
driver select(ud->port, (ErlDrvEvent) ud->fd, DO _READ, 0);
ENSURE (1) ;
**res = 0;
return 1;
case 'D':
if (ud->type < portTypeCommand) {
return report control error(res, res size, "einval");
b

ud->type = portTypeData;
do _recv(ud);

ENSURE (1) ;

**res = 0;

return 1;

O~NOURAWNREFRFOOONOUURARWNREFRFOOONOUURARWNREROOONOULEAWN

A PRABEPAPEPRAPRPPRPPRPWWWWWWWWWWNNNNNNNNNNERERFRERERFBRERFRF

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 43

1.6 How to Implement an Alternative Carrier for the Erlang Distribution

(49) case 'N':

(50) if (ud->type != portTypeListener) {

(51) return report control error(res, res size, "einval");
(52) }

(53) ENSURE(5) ;

(54) (*res)[0] = 0;

(55) put packet length((*res) + 1, ud->fd);

(56) return 5;

(57) case 'T': /* tick */

(58) if (ud->type != portTypeData) {

(59) return report control error(res, res size, "einval");
(60) ¥

(61) do send(ud,"",0);

(62) ENSURE (1) ;

(63) **res = 0;

(64) return 1;

(65) case 'R':

(66) if (ud->type != portTypeListener) {

(67) return report control error(res, res size, "einval");
(68) }

(69) ENSURE(2) ;

(70) (*res)[0] = 0O;

(71) (*res)[1] = ud->creation;

(72) return 2;

(73) default:

(74) return report control error(res, res size, "einval");
(75) ¥

(76) #undef ENSURE

(77) }

The macro ENSURE (line 5-10) is used to ensure that the buffer is large enough for the answer. We switch on the
command and take actions. We always have read select active on aport indat a mode (achieved by callingdo_r ecv
on line 45), but we turn off read selection ini nt er medi at e and conmand modes (line 27 and 36).

Therest of the driver is more or less UDS-specific and not of general interest.

1.6.3 Putting It All Together

To test the distribution, the net _ker nel : st art/ 1 function can be used. It is useful, as it starts the distribution
on arunning system, where tracing/debugging can be performed. Thenet _ker nel : st art/ 1 routine takes alist
as its single argument. The list first element in the list is to be the node name (without the " @hostname") as an
atom. The second (and last) element is to be one of the atoms shor t nanes or | ongnhanes. In the example case,
shor t nanes ispreferred.

Fornet _ker nel tofind out which distribution moduleto use, command-lineargument - pr ot o_di st isused. Itis
followed by one or more distribution module names, with suffix *_dist" removed, that is, uds_di st asadistribution
moduleis specified as- pr ot o_di st uds.

If noepnd (TCP port mapper daemon) is used, also command-line option - no_epnd isto be specified, which makes
Erlang skip the epnd startup, both as an OS process and as an Erlang ditto.

The path to the directory where the distribution modul es reside must be known at boot. This can be achieved either by
specifying - pa <pat h> on the command line or by building a boot script containing the applications used for your
distribution protocol. (Intheuds_di st protocol, only theuds_di st application needs to be added to the script.)

Thedistribution startsat boot if all the aboveisspecifiedand an- snane <namne> flagispresent at thecommand line.
Example 1

$ erl -pa $ERL _TOP/lib/kernel/examples/uds_dist/ebin -proto dist uds -no_epmd
Erlang (BEAM) emulator version 5.0

44 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 The Abstract Format

Eshell V5.0 (abort with ~G)

1> net kernel:start([bing,shortnames]).
{ok,<0.30.0>}

(bing@hador)2>

Example 2:

$ erl -pa $ERL TOP/lib/kernel/examples/uds dist/ebin -proto dist uds \
-no_epmd -sname bong
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bong@hador) 1>

The ERL_FLAGS environment variable can be used to store the complicated parametersin:

$ ERL_FLAGS=-pa $ERL TOP/lib/kernel/examples/uds dist/ebin \
-proto _dist uds -no epmd

$ export ERL FLAGS

$ erl -sname bang

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ~G)
(bang@hador) 1>

ERL_FLAGS should not include the node name.

1.7 The Abstract Format

This section describes the standard representation of parse trees for Erlang programs as Erlang terms. This
representation isknown asthe abstract for mat. Functions dealing with such parsetreesare conpi | e: forns/ 1, 2
and functions in the following modules:

* epp(3)

« erl_eval (3)
e erl _lint(3)
e erl_parse(3)

« erl_pp(3)
e i0(3)

The functions are also used as input and output for parse transforms, seethe conpi | e(3) module.

We use the function Rep to denote the mapping from an Erlang source construct Cto its abstract format representation
R, andwriteR = Rep(C) .

The word LI NE in this section represents an integer, and denotes the number of the line in the source file where the
construction occurred. Severa instances of LI NE in the same construction can denote different lines.

As operators are not termsin their own right, when operators are mentioned below, the representation of an operator
isto be taken to be the atom with a printname consisting of the same characters as the operator.

1.7.1 Module Declarations and Forms

A module declaration consists of a sequence of forms, which are either function declarations or attributes.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 45

1.7 The Abstract Format

If D is a module declaration consisting of the forms F_1, ..., F_k, then Rep(D) = [Rep(F_1), ...,
Rep(F_k) 1.

If F is an attribute -export([Fun_1/A 1, ce Fun_k/ A k]), then Rep(F) =
{attribute, LI NE, export,[{Fun_1,A 1}, ..., {Fun_k, A k}1}.

If F is an atribute -inport(Md,[Fun_1/A 1, R Fun_k/ A k]), then Rep(F) =
{attribute, LINE, inport,{Md,[{Fun_1,A 1}, ..., {Fun_k, A k}1}}.

If Fisan attribute - nodul e(Mbd) ,then Rep(F) ={at tri but e, LI NE, nodul e, Mod}.

If Fisanattribute-fil e(Fi |l e, Li ne),then Rep(F) ={attribute, LINE file,{File,Line}}.

If Fisafunction declaration Name Fc_1 ; ... ; Nanme Fc_k, where each Fc_i is a function
clause with a pattern sequence of the same length Ari t y, then Rep(F) ={f uncti on, LI NE, Nane, Arity,
[Rep(Fc_1), ...,Rep(Fc_k)]}.

If Fisafunction specification- Spec Nanme Ft_1; ...; Ft_k, whereSpec iseither the atom spec or
theatom cal | back, and each Ft _i isapossibly constrained function type with an argument sequence of the
samelength Ari ty, thenRep(F) ={attri bute, Li ne, Spec, {{Nane, Arity},[Rep(Ft_1), ...,
Rep(Ft _k)]1}}.

If F is a function specification - spec Mdd: Name Ft_1; ...; Ft_k, where each Ft _i is a
possibly constrained function type with an argument sequence of the same length Ari ty, then Rep(F) =
{attribute, Line, spec, {{Mod, Nane, Arity},[Rep(Ft_1), ..., Rep(Ft_k)]}}.

If Fisarecord declaration - recor d(Nane, {V_1, ..., V_k}),whereeachV i isarecord field, then
Rep(F) ={attribute, LINE, record, {Narme, [Rep(V_1), ..., Rep(V_k)]}}.ForRep(V), see
below.

If Fisatype declaration - Type Nane(V_1, ..., V_Kk) :: T, whereType iseither the atomt ype
or the atom opaque, each V_i isavariable, and T is a type, then Rep(F) = {attri but e, LI NE, Type,

{Nane, Rep(T),[Rep(V_1), ..., Rep(V_K)]}}.

If Fisawild attribute- A(T) , then Rep(F) ={attri but e, LI NE, A, T}.

Record Fields

Each field in arecord declaration can have an optional, explicit, default initializer expression, and an optional type.

If VisA thenRep(V)={record field,LINE Rep(A)}.

If VisA = E, whereEisanexpression, then Rep(V) ={record_fi el d, LI NE, Rep(A), Rep(E)}.

If V is A s T, where T is a type then Rep(V) = {typed record field,
{record field,LINE Rep(A}, Rep(T)}.

IfVisA = E :: T,whereEisan expressionand T isatype, then Rep(V) ={typed_record_field,
{record_field,LINE Rep(A), Rep(E)}, Rep(T)}.

Representation of Parse Errors and End-of-File

In addition to the representations of forms, the list that represents a module declaration (as returned by functionsin
epp(3) ander| _par se(3)) can contain the following:

Tuples{ error, E} and{war ni ng, W, denoting syntactically incorrect forms and warnings
{eof , LI NE}, denoting an end-of-stream encountered before a complete form had been parsed

1.7.2 Atomic Literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions, and guards:

If L isan atom litera, then Rep(L) ={ at om LI NE, L}.
If L isacharacter literal, then Rep(L) ={ char, LI NE, L}.
If L isafloat literal, then Rep(L) ={f | oat, LI NE, L}.

46 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 The Abstract Format

If L isan integer literal, then Rep(L) ={i nt eger, LI NE, L}.
If L isastring literal consisting of the charactersC 1, ...,C k,thenRep(L) ={string,LINE, [C 1, ...,
C K]}.

Notice that negative integer and float literals do not occur as such; they are parsed as an application of the unary
negation operator.

1.7.3 Patterns

If Psisasequenceof patternsP_1, ..., P_k,thenRep(Ps)=[Rep(P_1), ..., Rep(P_k)] .Suchsequences
occur asthelist of argumentsto afunction or fun.

Individual patterns are represented as follows:

If Pisan atomic literal L, then Rep(P) = Rep(L).

If P is a bitstring pattern <<P_1: Si ze 1/ TSL_1, e P_k: Size_k/TSL_k>>, where each
Si ze_i isan expression that can be evaluated to an integer, and each TSL_i is a type specificer list, then
Rep(P) = {bi n, LI NE, [{bi n_el ement, LI NE, Rep(P_1), Rep(Si ze_1), Rep(TSL_1)},

{bi n_el ement, LI NE, Rep(P_k), Rep(Si ze_k), Rep(TSL_k)}]}. For Rep(TSL), see below. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

If Pisacompound patternP_1 = P_2,then Rep(P) ={ mat ch, LI NE, Rep(P_1), Rep(P_2)}.

If Pisaconspattern[P_h | P_t],then Rep(P) ={cons, LI NE, Rep(P_h), Rep(P_t)}.

If Pisamap pattern#{ A 1, ..., A k},whereeachA i isanassociationP_i _1 : = P_i _2,then Rep(P)
={map, LINE, [Rep(A_1), ..., Rep(A_K)]}.ForRep(A), seebelow.

If Pisanil pattern[], then Rep(P) ={ni | , L1 NE} .

If Pisan operator patternP_1 Qp P_2, where Op isabinary operator (thisiseither an occurrence of ++ applied
to aliteral string or character list, or an occurrence of an expression that can be evaluated to a number at compile
time), then Rep(P) ={ op, LI NE, Op, Rep(P_1), Rep(P_2)}.

If Pisan operator pattern Qo P_0, where Op isaunary operator (thisis an occurrence of an expression that can
be evaluated to a number at compile time), then Rep(P) ={ op, LI NE, Op, Rep(P_0) }.

If Pisaparenthesized pattern (P_0), then Rep(P) = Rep(P_0) , that is, parenthesized patterns cannot be
distinguished from their bodies.

If P is a record field index pattern #Nane. Fi el d, where Fiel d is an atom, then Rep(P) =
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

If P is a record patteen #Name{Field 1=P_1, C Fi el d_k=P_Kk},
where each Field_i is an atom or . then Rep(P) =
{record, LI NE, Nane, [{record_field, LINE, Rep(Field_1), Rep(P_1)},
{record_field,LINE Rep(Field k), Rp(P_k)}1}.

If Pis atuple pattern {P_1, ..., P_k}, then Rep(P) = {tuple, LINE, [Rep(P_1), ...,
Rep(P_k)1}.

If Pisauniversal pattern _, thenRep(P) ={var, LINE,"' _'}.

If Pisavariable pattern V, then Rep(P) = { var, LI NE, A}, where A is an atom with a printname consisting of
the same characters as V.

Notice that every pattern has the same source form as some expression, and is represented in the same way as the
corresponding expression.

1.7.4 Expressions

A body B is a non-empty sequence of expressionsE 1, ..., E k, and Rep(B) =[Rep(E_ 1), ...,
Rep(E_k)].

An expression E is one of the following:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 47

1.7 The Abstract Format

* If Eisanatomic literal L, then Rep(E) = Rep(L).

e |If Eisabitstringcomprehension<<E 0 || Q.1, ..., Q k>> whereeachQ i isaqudifier, then Rep(E)
={bc,LINE, Rep(E 0),[Rep(Q.1), ..., Rep(QKk)]}.ForRep(Q), seebelow.

e If E is a bitstring constructor <<E 1: Size 1/TSL_1, Ce E k: Si ze k/ TSL_k>>,
where each Size i is an expresson and each TSL_i is a type specificer list, then

Rep(E) = {bi n, LI NE, [{bi n_el ement, LI NE, Rep(E_1), Rep(Si ze_1), Rep(TSL_1)}, ...,
{bin_el enent, LI NE, Rep(E_k), Rep(Si ze_k), Rep(TSL_k)}]}. For Rep(TSL), see below. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

» If Eisablock expression begi n B end, where Bisabody, then Rep(E) = { bl ock, LI NE, Rep(B)}.

e |IfEisacaseexpressoncase E O of Cc_1 ; ... ; Cc_k end,whereE O isanexpression and each
Cc_i isacaseclause, thenRep(E) ={"' case', LI NE, Rep(E_0),[Rep(Cc_1), ..., Rep(Cc_Kk)]}.

 |IfEisacatchexpressioncat ch E 0, thenRep(E)={' catch', LI NE, Rep(E_0)}.
« |IfEisaconsskeleton[E_h | E_t],thenRep(E) ={cons, LI NE, Rep(E_h), Rep(E_t)}.
+ >IfEisafunexpressionf un Name/ Arity,thenRep(E)={' fun', LI NE, {function, Name, Arity}}.

« If E is a fun expression fun Modul e: Narme/ Arity, then Rep(E) = {'fun', LINE,
{function, Rep(Mdul e), Rep(Nane), Rep(Arity)}}. (Before Erlang/lOTP R15. Rep(E) =
{'fun',LINE, {function, Modul e, Nane, Arity}}.)

 IfEisafunexpressonfun Fc_1 ; ... ; Fc_k end,whereeachFc_i isafunction clause, then Rep(E)
={"fun',LINE {clauses,[Rep(Fc_1), ..., Rep(Fc_k)]1}}.

» |IfEisafunexpressionfun Nane Fc_1; ... ; Name Fc_k end,whereNane isavariableandeachFc i
isafunction clause, then Rep(E) = { naned_f un, LI NE, Nane, [Rep(Fc_1), ..., Rep(Fc_k)]}.

e |If E is a function cal E O(E_1, ce, E k), then Rep(E) = {call, LINE Rep(E_0),
[Rep(E_1), ..., Rep(E_K)]1}.

« If E is a function cal E_mE_O(E_1, R E k), then Rep(E) = {call, LINE,
{remote, LINE, Rep(E_m, Rep(E_0)},[Rep(E_1), ..., Rep(E_k)]}.

e |IfEisanifexpressonif lIc 1 ; ... ; lc_k end,whereeachl|c i isanif clause then Rep(E) =
{"if",LINE,[Rep(lc_1), ..., Rep(lc_Kk)]}.

« If Eisalist comprehenson[E_ 0O || Q1, ..., QK],whereeach Q i isa qudlifier, then Rep(E) =
{lc,LINE, Rep(E_0),[Rep(Q.1), ..., Rep(QKk)]}.ForRep(Q), seebelow.

o IfEisamapcreation#{ A 1, ..., A k},whereeachA i isanassociationE_i _1 =>E i _2orE_i _1 :=
E i_2,thenRep(E) ={map, LINE, [Rep(A_1), ..., Rep(A_k)]}.ForRep(A), seebelow.

e IfEisamapupdate E O#{A 1, ..., A k},whereeachA i isanassociaionE i _1 => E i_2or
Ei 1 := E.i_2,thenRep(E) ={map, LINE, Rep(E_0),[Rep(A_ 1), ..., Rep(AKk)]}.For
Rep(A), see below.

e |If E is a match operator expression P = E 0, where P is a pattern, then Rep(E) =

{mat ch, LI NE, Rep(P), Rep(E_0) }.

o« IfEisnil,[],thenRep(E)={ni |, LI NE}.

e |If Eisan operator expressionE_1 Op E_2, where Op is abinary operator other than match operator =, then
Rep(E) ={op, LI NE, Op, Rep(E_1), Rep(E_2)}.

e If E is an operator expression Op E 0, where Op is a unary operator, then Rep(E) =
{op, LINE, Op, Rep(E_0)}.

» |If Eisaparenthesized expression(E_O), then Rep(E) = Rep(E_0) , that is, parenthesized expressions cannot
be distinguished from their bodies.

 IfEisareceiveexpressionreceive Cc_1 ; ... ; Cc_k end,whereeach Cc_i isacaseclause, then
Rep(E) ={' receive' ,LINE [Rep(Cc_1), ..., Rep(Cc_k)]}.

48 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 The Abstract Format

If Eisareceive expressionreceive Cc_1 ; ... ; Cc_k after EO -> Bt end, where
each Cc_i isacaseclause, E_O is an expression, and B_t is a body, then Rep(E) ={' recei ve', LI NE,
[Rep(Cc_1), ..., Rep(Cc_k)],Rep(E_0), Rep(B_t)}.

If E is a record creation #Nane{Field 1=E 1, ce Fi el d_k=E k},
where each Field_i is an atom or ., then Rep(E) =
{record, LI NE, Nane, [{record _field, LINE, Rep(Field 1), Rep(E_1)}, ce
{record field,LINE Rep(Field k), Rep(E_k)}1}.

If E is a record field access E O#Nane. Fi el d, where Field is an aom, then Rep(E) =
{record_field,LlINE Rep(E_0), Nanme, Rep(Fi el d)}.

If E is a record field index #Name.Field, whee Field is an aom, then Rep(E) =
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

If E is a record update E O#Name{Fiel d_1=E 1, Ce
Fi el d_k=E Kk}, where each Field_i is an atom, then Rep(E) =
{record, LI NE, Rep(E_0), Nane, [{record_field, LINE, Rep(Field 1), Rep(E_ 1)}, ...,
{record_field,LINE Rep(Field k), Rep(E_k)}]}.

If E is atuple skeleton {E_1, ..., E_k}, then Rep(E) = {tupl e, LINE, [Rep(E_1), ...,

Rep(E_k)1}.

If Eisatry expressiontry B catch Tc_1 ; ... ; Tc_k end,whereBisabody andeachTc i isa
catch clause, then Rep(E) ={' try' , LINE, Rep(B),[],[Rep(Tc_1), ..., Rep(Tc_k)],[1}.

If Eisatry expressontry Bof Cc_1; ... ; Cc_k catch Tc_1; ... ; Tc_n end,whereBis
abody, each Cc_i isacaseclause, andeach Tc_j isacatch clause, thenRep(E)={'try', LI NE, Rep(B),

[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ..., Rep(Tc_n)],[1}.

If E is atry expression try B after A end, where B and A are bodies, then Rep(E) =
{"try",LINE Rep(B),[].[],Rep(A)}.

If Eisatry expressiontry B of Cc_1 ; ... ; Cc_k after A end,whereBandAareabodies, and
eachCc_i isacaseclause thenRep(E)={"'try', LI NE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],
[].Rep(A)}.

If Eisatry expressiontry B catch Tc_1 ; ... ; Tc_k after A end, whereBand A are

bodies, and each Tc_i isacatch clause, thenRep(E)={"' try', LI NE, Rep(B),[],[Rep(Tc_1), ...,
Rep(Tc_k)], Rep(A)}.

If Eisatry expressontry B of Cc 1 ; ... ; Cc_k catch Tc_1 ; ... ; Tc_n
after A end, where B and A are a bodies, each Cc_i is acase clause, and each Tc_j is a catch clause,
then Rep(E) ={'try', LINE, Rep(B),[Rep(Cc_1), ..., Rep(Cc_k)],[Rep(Tc_1), ...,

Rep(Tc_n)], Rep(A)}.

If EisavariableV, then Rep(E) ={ var, LI NE, A}, where Aisan atom with a printname consisting of the same
charactersas V.

Qualifiers

A quadlifier Q isone of the following:

If Qisafilter E, where E is an expression, then Rep(Q) = Rep(E) .
If Q is a generator P <- E, where P is a pattern and E is an expression, then Rep(Q) =
{generate, LI NE, Rep(P), Rep(E) }.

If Q is a bitstring generator P <= E, where P is a pattern and E is an expression, then Rep(Q) =
{b_generate, LINE, Rep(P), Rep(E) }.

Bitstring Element Type Specifiers

A type specifier list TSL for abitstring element isaseguence of type specifiersTS 1 - ... - TS k,andRep(TSL)
=[Rep(TS_1), ..., Rep(TS_k)].

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 49

1.7 The Abstract Format

* If TSisatype specifier A, where Aiis an atom, then Rep(TS) = A.
« |If TSisatype specifier A: Val ue, where Aisan atom and Val ue isan integer, then Rep(TS) ={ A, Val ue}.

Associations
An association A is one of the following:

 If AisanassociationK => V, then Rep(A) ={map_fi el d_assoc, LI NE, Rep(K), Rep(V)}.
 |IfAisanassociationK : = V,thenRep(A) ={map_fi el d_exact, LI NE, Rep(K), Rep(V)}.

1.7.5 Clauses

There are function clauses, if clauses, case clauses, and catch clauses.
A clause C is one of the following:

e |IfCisacaseclauseP - > B, wherePisapattern and Bisabody, then Rep(C) ={ cl ause, LI NE, [Rep(P)],
[1,Rep(B)}.

e |IfCisacaseclauseP when Gs -> B, whereP isapattern, Gs isaguard sequence, and B is a body, then
Rep(C) ={cl ause, LINE, [Rep(P)], Rep(Gs), Rep(B) }.

e |If Cisacach clause P -> B, where P is a pattern and B is a body, then Rep(C) = { cl ause, LI NE,
[Rep({throw, P, _})].[],Rep(B)}.

e |IfCisacachclause X : P -> B, whereXisan atomic literal or avariable pattern, P is a pattern, and Bisa
body, then Rep(C) ={ cl ause, LINE, [Rep({X, P, _})].[], Rep(B)}.

« |IfCisacachclauseP when Gs -> B, whereP isapattern, Gs isaguard sequence, and B is a body, then
Rep(C) ={cl ause, LINE, [Rep({throw, P, _})], Rep(Gs), Rep(B)}.

e« If Cisacachclause X : P when Gs -> B, where X is an atomic literal or a variable
pattern, P is a pattern, Gs is a guard sequence, and B is a body, then Rep(C) = {cl ause, LI NE,
[Rep({X, P, _})],Rep(Gs),Rep(B)}.

e |If Cisafunctionclause(Ps) -> B, wherePs is a pattern sequence and B is a body, then Rep(C) =
{cl ause, LI NE, Rep(Ps),[], Rep(B)}.

e IfCisafunctionclause(Ps) when Gs -> B,wherePs isapattern sequence, Gs isaguard sequence and
Bisabody, then Rep(C) ={ cl ause, LI NE, Rep(Ps), Rep(Gs), Rep(B)}.

« IfCisanif clauseGs -> B, whereGs isaguard sequence and B isabody, then Rep(C) = { cl ause, LI NE,
[1,Rep(Gs),Rep(B)}.

1.7.6 Guards

A guard sequence Gsisasequenceof guardsG 1; ...; G k,andRep(Gs)=[Rep(G_ 1), ..., Rep(GKk)].
If the guard sequenceis empty, then Rep(Gs) =[] .

A guard G is a non-empty sequence of guardtests& _1, ..., & _k,andRep(G) =[Rep(&_1), ...,
Rep(& _Kk)].

A guard test Gt is one of the following:

» |If Gtisanatomic literal L, then Rep(Gt) = Rep(L).

e If Gt is a bitstring constructor <<G& _1:Size 1/TSL 1, Ce, & _k:Size k/ITSL_k>>,
where each Size i is a guard test and each TSL_ i is a type specificer list, then
Rep(Gt)={bi n, LINE, [{bi n_el ement, LINE, Rep(& _1), Rep(Size_1),Rep(TSL_1)}, ...,
{bin_elenent, LINE, Rep(&G _k), Rep(Si ze_k), Rep(TSL_k) }]}. For Rep(TSL), see above. An
omitted Si ze_i isrepresented by def aul t . Anomitted TSL_i isrepresented by def aul t .

 IfGtisaconsskeleton[&G _h | G _t],then Rep(Gt) ={cons, LI NE, Rep(& _h), Rep(G _t)}.

50 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.7 The Abstract Format

If Gtisafunctioncal ACG _1, ..., & _k),whereAisanatom,then Rep(Gt)={cal |, LI NE, Rep(A),
[Rep(G_1), ..., Rep(G_Kk)1}.
If Gtisafunctioncal A mA(G 1, ..., &G _k),whereA mistheatomer| ang and Aisan atom or an

operator, then Rep(Gt) ={cal I , LI NE, {renote, LI NE, Rep(A n), Rep(A },[Rep(G _1), ...,
Rep(& _k)1}.

If Gtisamap creation#{ A 1, ..., A k},whereeachA i isanassociation& i _1 => G _i_2or
G _i_1:=a&_i_2,thenRep(Gt)={map, LINE, [Rep(A_1), ..., Rep(A_k)]}.ForRep(A), see
above.

If Gtisamapupdate & _O#{A 1, ..., A k},whereeachA i isanassociationG i 1 => & i 2
oG _i_1:=&_i_2,thenRep(Gt)={map, LI NE, Rep(& _0),[Rep(A_1), ..., Rep(A Kk)]}.

For Rep(A), see above.

If Gtisnil,[],then Rep(Gt) ={ni |, LI NE}.

If Gtisan operator guardtest G 1 Op & _2, where Op isabinary operator other than match operator =, then
Rep(Gt) ={ op, LI NE, Op, Rep(& _1), Rep(G _2)}.

If Gt is an operator guard test Op &G _0, where Op is a unary operator, then Rep(Gt) =
{op, LINE, Op, Rep(G _0)}.

If Gtisaparenthesized guardtest (G _0), then Rep(Gt) = Rep(G _0) , that is, parenthesized guard tests
cannot be distinguished from their bodies.

If Gt is a record creation #Nane{Field 1=G 1, cey Field k=G _k},
where each Field_i is an atom or ., then Rep(Gt) =
{record, LI NE, Nane, [{record _field, LINE Rep(Field 1), Rep(G _1)}, ce
{record field,LINE Rep(Field k), Rep(& _k)}1}.

If Gt is a record field access G _O#Name. Fi el d, where Field is an atom, then Rep(Gt)
{record_field,LINE Rp(&_0), Nane, Rep(Field)}.

If Gt is a record field index #Nane.Field, where Field is an atom, then Rep(Gt)
{record_i ndex, LI NE, Nane, Rep(Fi el d)}.

If Gtisatupleskeleton{G _1, ..., G _k}, then Rep(Gt) ={tuple, LINE [Rep(&_1), ...,
Rep(& _k)1}.

If Gt isavariable pattern V, then Rep(Gt) = { var, LI NE, A}, where A is an atom with a printname consisting
of the same charactersas V.

Notice that every guard test has the same source form as some expression, and is represented in the same way as the
corresponding expression.

1.7.7 Types

If T is an annotated type A :: T_0, where A is a variable, then Rep(T) = {ann_t ype, LI NE,
[Rep(A), Rep(T_0)]}.

If T isan atom or integer litera L, then Rep(T) = Rep(L).

If T is a bitstring type <<_: M _: _*N>>, where M and N are singleton integer types, then Rep(T) =
{type, LI NE, bi nary, [Rep(M, Rep(N1}.

If Tistheempty listtype[], then Rep(T) ={type, Line,nil,[]}.

If Tisafuntypefun(),thenRep(T)={type, LINE,'fun',[]1}.

If T is a fun type fun((...) -> T 0), then Rep(T) = {type,LINE, ' fun',
[{type, LINE, any}, Rep(T_0)]}.

If Tisafuntypef un(Ft),whereFt isafunction type, then Rep(T) = Rep(Ft) . For Rep(Ft), see below.

If T is an integer range type L .. H, where L and H are singleton integer types, then Rep(T) =
{type, LINE, range, [Rep(L), Rep(H)]}.
If Tisamaptypemap(),then Rep(T) ={type, LI NE, map, any}.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 51

1.7 The Abstract Format

e If Tisamap type #{A 1, ..., Ak}, where each A i is an association type, then Rep(T) =
{type, LI NE, map, [Rep(A_1), ..., Rep(A_K)]}.ForRep(A), seebelow.

e |IfTisanoperatortypeT 1 Op T_2,where Op isabinary operator (thisisan occurrence of an expression that
can be evaluated to an integer at compiletime), then Rep(T) ={op, LI NE, Op, Rep(T_1), Rep(T_2)}.

e If Tisanoperator typeOQp T_O, where Op isaunary operator (thisis an occurrence of an expression that can be
evaluated to an integer at compile time), then Rep(T) ={ op, LI NE, Op, Rep(T_0) }.
o IfTis(T_O0),thenRep(T)=Rep(T_0),thatis, parenthesized types cannot be distinguished from their bodies.

e If T is a predefined (or built-in) type N(T_1, T k), then Rep(T) = {type, LI NE, N,
[Rep(T_1), ..., Rep(T_Kk)]}.

« |If Tisarecord type #Name{F_1, ..., F_k}, whereeach F_i is arecord field type, then Rep(T) =
{type, LI NE, record, [Rep(Nane), Rep(F_1), ..., Rep(F_k)]}.ForRep(F), see below.

e |IfTisaremotetypeM N(T_1, ..., T _k),thenRep(T)={renote_type, LINE, [Rep(M, Rep(N),
[Rep(T_1), ..., Rep(T_K)11}.

 IfTisatupletypet upl e(),then Rep(T) ={t ype, LI NE, t upl e, any}.

e IfTisatupletype{T 1, ..., T_Kk},then Rep(T) ={type, LINE, tuple,[Rep(T_1), ...,
Rep(T_k)]1}.

e IfTisatypeunionT_1 | ... | T_k,then Rep(T) ={type, LI NE, union,[Rep(T_1), ...,
Rep(T_k)1}.

* If TisatypevariableV, then Rep(T) ={ var, LI NE, A}, where Aisan atom with a printhame consisting of the
same charactersas V. A type variable is any variable except underscore ().

e If T is a user-defined type N(T_1, T k), then Rep(T) = {user _type, LINE, N,
[Rep(T_1), ..., Rep(T_Kk)]1}.

Function Types

A function type Ft is one of the following:

« IfFtisaconstrainedfunctiontypeFt _1 when Fc,whereFt _1 isafunctiontypeand Fc isafunction constraint,
then Rep(T) ={t ype, LI NE, bounded_f un, [Rep(Ft _1), Rep(Fc)]} . For Rep(Fc), see below.

e |If tisafunctiontype (T 1, ..., T.n) -> T 0O, where each T i is a type, then Rep(Ft) =
{type, LINE, ' fun',[{type, LINE product, [Rep(T_1), ..., Rep(T_n)]},Rep(T_0)]}.

Function Constraints

A function constraint Fc is a non-empty sequence of constraints C 1, C k, and Rep(Fc) =

[Rep(C 1), ..., Rep(CKk)].

 IfCisacondtrainti s_subtype(V, T) orV :: T,whereVisatypevariableand T isatype, then Rep(C)
={type, LINE, constraint,[{atom LI NE, is_subtype},[Rep(V),Rep(T)]11}.

Association Types

e If A is an association type K => V, where K and V are types, then Rep(A) =
{type, LI NE, map_fiel d_assoc, [Rep(K), Rep(V)1}.
« If A is an association type K i= V, where K and V are types, then Rep(A) =

{type, LINE, map_fiel d_exact,[Rep(K), Rep(V)]}.

Record Field Types

 |IfFisarecordfieldtypeNane :: Type, where Type isatype, then Rep(F) =
{type, LINE, field_type, [Rep(Nane), Rep(Type)]}.

52 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.8 tty - A Command-Line Interface

1.7.8 The Abstract Format after Preprocessing

The compilation option debug_i nf o can be specified to the compiler to have the abstract code stored in the
abstract _code chunk inthe Beam file (for debugging purposes).

As from Erlang/OTP R9C, the abstract code chunk contains {raw _abstract v1, Abstract Code},
where Abst r act Code isthe abstract code as described in this section.

In OTP releases before RIC, the abstract code after some more processing was stored in the Beam file. The first
element of the tuple would be either abst ract _v1 (in OTPR7B) or abst r act _v2 (in OTP R8B).

1.8 tty - A Command-Line Interface

tty is asimple command-line interface program where keystrokes are collected and interpreted. Completed lines
are sent to the shell for interpretation. A simple history mechanism saves previous lines, which can be edited before
sending them to the shell. t t y is started when Erlang is started with the following command:

erl

t t y operatesin one of two modes:

» Normal mode, in which text lines can be edited and sent to the shell.
» Shell break mode, which allows the user to kill the current shell, start multiple shells, and so on.

1.8.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the Emacs line-editing
commands are supported. The following is a complete list of the supported line-editing commands.

Typographic conventions:
e G a means pressing the Ctrl key and the letter a simultaneously.
« M meanspressing the Esc key and the letter f in sequence.

* Home and End represent the keys with the same name on the keyboard.
« Left andRi ght represent the corresponding arrow keys.

Key Sequence Function

Home Beginning of line
C-a Beginning of line
C-b Backward character
C-Left Backward word
M-b Backward word
Cd Delete character
M-d Delete word

End End of line

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 53

1.9 How to Implement a Driver

C-e End of line

C Forward character

C-Right Forward word

M-f Forward word

C-g Enter shell break mode

C-k Kill line

C-u Backward kill line

CA Redraw line

C-n Fetch next line from the history buffer
C-p Fetch previous line from the history buffer
C-t Transpose characters

C-w Backward kill word

C-y Insert previously killed text

Table 8.1: tty Text Editing

1.8.2 Shell Break Mode

In this mode the following can be done:

» Kill or suspend the current shell
e Connect to a suspended shell
e Start anew shell

1.9 How to Implement a Driver

Note:

This section was written along time ago. Most of it is still valid, as it explains important concepts, but this was
written for an older driver interface so the examples do not work anymore. The reader is encouraged to read the
erl _driver anddriver _ent ry documentation also.

1.9.1 Introduction

This section describes how to build your own driver for Erlang.

54 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

A driver in Erlang is a library written in C, which is linked to the Erlang emulator and called from Erlang. Drivers
can be used when C is more suitable than Erlang, to speed up things, or to provide access to OS resources not directly
accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known asaDLL on Windows), or statically loaded, linked
with the emulator when it is compiled and linked. Only dynamically loaded drivers are described here, statically linked
drivers are beyond the scope of this section.

Warning:

When a driver is loaded it is executed in the context of the emulator, shares the same memory and the same
thread. This means that all operations in the driver must be non-blocking, and that any crash in the driver brings
the whole emulator down. In short, be careful.

1.9.2 Sample Driver

This section describes a simple driver for accessing a postgres database using the libpg C client library. Postgres is
used because it is free and open source. For information on postgres, see www.postgr es.or g.

The driver is synchronous, it uses the synchronous calls of the client library. Thisis only for simplicity, but not good,
asit halts the emulator while waiting for the database. Thisisimproved below with an asynchronous sample driver.

The code is straightforward: all communication between Erlang and the driver isdonewithport _control / 3, and
the driver returns data back using ther buf .

An Erlang driver only exports one function: the driver entry function. This is defined with amacro, DRI VER_| NI T,
which returns a pointer to aC st r uct containing the entry points that are called from the emulator. The st r uct

defines the entries that the emulator calls to call the driver, with a NULL pointer for entries that are not defined and
used by the driver.

The st art entry is caled when the driver is opened as a port with open_port/ 2. Here we alocate memory
for a user data structure. This user data is passed every time the emulator calls us. First we store the driver
handle, as it is needed in later cals. We allocate memory for the connection handle that is used by LibPQ. We
also set the port to return alocated driver binaries, by setting flag PORT _CONTROL_FLAG Bl NARY, caling
set _port_control _fl ags.(Thisisbecausewedo not know if our datawill fitintheresult buffer of cont r ol ,
which has a default size, 64 bytes, set up by the emulator.)

Anentry i ni t iscalled when the driver isloaded. However, we do not use this, as it is executed only once, and we
want to have the possibility of several instances of the driver.

Thest op entry is called when the port is closed.

The control entry iscaled from the emulator when the Erlang code calls port _cont r ol / 3, to do the actual
work. We have defined a simple set of commands: connect to log in to the database, di sconnect to log out,
and sel ect to send a SQL-query and get the result. All results are returned through r buf . The library ei in
erl _i nterface isusedtoencodedatain binary term format. Theresult isreturned to the emulator as binary terms,
sobi nary_t o_t er miscaled in Erlang to convert the result to term form.

Thecodeisavailablein pg_sync. ¢ inthesanpl e directory of ert s.

The driver entry contains the functions that will be called by the emulator. In this example, only st art , st op, and
control areprovided:

/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 55

href

1.9 How to Implement a Driver

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static ErlDrvEntry pqg driver entry = {

NULL, /* init */

start,

stop,

NULL, /* output */

NULL, /* ready input */
NULL, /* ready output */
"pg_sync", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */
control,

NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready async */
NULL, /* flush */

NULL, /* call */

NULL /* event */

We have a structure to store state needed by the driver, in this case we only need to keep the database connection:

typedef struct our data s {
PGconn* conn;
} our data t;

The control codes that we have defined are as follows:

/* Keep the following definitions in alignment with the
* defines in erl pqg sync.erl

*/
#define DRV_CONNECT ‘'c!
#define DRV_DISCONNECT ‘D!
#define DRV_SELECT ‘St

Thisreturnsthedriver structure. Themacro DRI VER _| NI T definesthe only exported function. All the other functions
are static, and will not be exported from the library.

/* INITIALIZATION AFTER LOADING */

* This is the init function called after this driver has been loaded.
* It must *not* be declared static. Must return the address to

* the driver entry.

*/

DRIVER INIT(pq drv)
{

}

return &pq driver entry;

56 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

Heresomeinitializationisdone, st ar t iscalled fromopen_port . Thedatawill be passedtocont r ol andst op.

/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)

{

our data t* data;

data = (our _data t*)driver alloc(sizeof(our data t));

data->conn = NULL;

set port control flags(port, PORT CONTROL FLAG BINARY);

return (ErlDrvData)data;

We call disconnect to log out from the database. (This should have been done from Erlang, but just in case.)

static int do disconnect(our data t* data, ei x buff* x);

static void stop(ErlDrvData drv_data)

{

our data t* data = (our data t*)drv data;

do_disconnect(data, NULL);
driver free(data);

We use the binary format only to return data to the emulator; input data is a string parameter for connect and
sel ect . Thereturned data consists of Erlang terms.

The functions get _s and ei _x_t o_new _bi nary are utilities that are used to make the code shorter. get _s
duplicates the string and zero-terminates it, as the postgres client library wantsthat. ei _x_t o_new_bi nary takes
anei _x_buf f buffer, alocates a binary, and copies the data there. This binary is returned in * r buf . (Notice that
this binary is freed by the emulator, not by us.)

static char* get s(const char* buf, int len);
static int do connect(const char *s, our data t* data, ei x buff* x);
static int do select(const char* s, our data t* data, ei x buff* x);

/* As we are operating in binary mode, the return value from control
* is irrelevant, as long as it is not negative.

*/

static int control(ErlDrvData drv data, unsigned int command, char *buf,

{

int len, char

int r;
el x buff x;

our data t* data = (our data

char* s = get s(buf, len);
el x new with version(&x);
switch (command) {
case DRV_CONNECT:
case DRV _DISCONNECT:
case DRV _SELECT:
default:

S5
1| | ||

**rpuf, int rlen)

t*)drv_data;

do connect(s, data, &x);
do disconnect(data, &x);
do select(s, data, &x);
-1; break;

break;
break;
break;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 57

1.9 How to Implement a Driver

rbuf = (char)ei x to new binary(&x);
ei x free(&x);

driver free(s);

return r;

do_connect iswherewe log in to the database. If the connection was successful, we store the connection handle
in the driver data, and return ' ok' . Otherwise, we return the error message from postgres and store NULL in the
driver data.

static int do _connect(const char *s, our data t* data, ei x buff* x)

{
PGconn* conn = PQconnectdb(s);
if (PQstatus(conn) != CONNECTION OK) {
encode error(x, conn);
PQfinish(conn);
conn = NULL;
} else {
encode ok(x);
h
data->conn = conn;
return 0;
I

If we are connected (and if the connection handle is not NULL), welog out from the database. We need to check if we
should encode an' ok' , aswe can get here from function st op, which does not return data to the emulator:

static int do disconnect(our data t* data, ei x buff* x)

if (data->conn == NULL)
return 0;
PQfinish(data->conn);
data->conn = NULL;
if (x != NULL)
encode ok(x);
return 0;

We execute a query and encode the result. Encoding is done in another C module, pg_encode. ¢, which is aso
provided as sample code.

static int do_select(const char* s, our data t* data, ei x buff* x)

PGresult* res = PQexec(data->conn, s);
encode result(x, res, data->conn);
PQclear(res);
return 0;

58 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

Here we check the result from postgres. If it is data, we encode it as lists of lists with column data. Everything from
postgres is C strings, so we use ei _x_encode_st ri ng to send the result as strings to Erlang. (The head of the
list contains the column names.)

void encode_result(ei x buff* x, PGresult* res, PGconn* conn)
{
int row, n _rows, col, n cols;
switch (PQresultStatus(res)) {
case PGRES_TUPLES OK:
n_rows = PQntuples(res);
n_cols = PQnfields(res);
ei x encode tuple header(x, 2);
encode ok(x);
ei x encode list header(x, n_rows+1);
ei x encode list header(x, n cols);
for (col = 0; col < n_cols; ++col) {
ei x_encode_string(x, PQfname(res, col));
}
ei x encode empty list(x);
for (row = 0; row < n_rows; ++row) {
ei x encode list header(x, n cols);
for (col = 0; col < n cols; ++col) {
ei x encode string(x, PQgetvalue(res, row, col));
}
ei x encode empty list(x);
}
ei x encode empty list(x);
break;
case PGRES_COMMAND_OK:
ei x encode tuple header(x, 2);
encode ok(x);
ei x encode string(x, PQcmdTuples(res));
break;
default:
encode error(x, conn);
break;

1.9.3 Compiling and Linking the Sample Driver

The driver isto be compiled and linked to a shared library (DLL on Windows). With gcc, thisis done with link flags
-shared and-f pi c. Asweusetheei library, we should includeit too. There are several versions of ei , compiled
for debug or non-debug and multi-threaded or single-threaded. In the makefile for the samples, the obj directory is
used for theei library, meaning that we use the non-debug, single-threaded version.

1.9.4 Calling a Driver as a Port in Erlang

Beforeadriver can be called from Erlang, it must be loaded and opened. Loadingisdoneusingtheer | _ddl | module
(theer! _ddl | driver that loads dynamic driver is actually adriver itself). If loading is successfull, the port can be
opened with open_port/ 2. The port name must match the name of the shared library and the name in the driver

entry structure.

When the port has been opened, the driver can be called. In the pg_sync example, we do not have any data from
the port, only the return value fromtheport _control .

The following code is the Erlang part of the synchronous postgres driver, pg_sync. erl :

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 59

1.9 How to Implement a Driver

-module(pg_sync).

-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->

case erl ddll:load driver(".", "pg sync") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit({error, E})

end,

Port = open port({spawn, ?MODULE}, [1),

case binary to term(port control(Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error

end.

disconnect(Port) ->
R = binary to term(port control(Port, ?DRV_DISCONNECT, "")),
port close(Port),
R.

select(Port, Query) ->
binary to_term(port_control(Port, ?DRV_SELECT, Query)).

The APl issimple:

e connect/ 1 loadsthedriver, opensit, and logs on to the database, returning the Erlang port if successful.
* sel ect/ 2 sendsaquery to the driver and returns the result.
e disconnect/ 1 closesthe database connection and the driver. (However, it does not unload it.)

The connection string is to be a connection string for postgres.

Thedriverisloaded wither| _ddl | : | oad_dri ver/ 2. If thisissuccessful, or if it is aready loaded, it is opened.
Thiswill call thest art functioninthedriver.

Weusetheport _control / 3 functionfor al calsintothedriver. Theresult from thedriver isreturned immediately
and converted to terms by calling bi nary_t o_t er n1 1. (Wetrust that the terms returned from the driver are well-
formed, otherwisethe bi nary_t o_t er mcalls could be contained inacat ch.)

1.9.5 Sample Asynchronous Driver

Sometimes database queries can take along time to complete, in our pg_sync driver, the emulator halts while the
driver isdoingitsjob. Thisisoften not acceptable, asno other Erlang process gets achanceto do anything. Toimprove
on our postgres driver, we re-implement it using the asynchronous callsin LibPQ.

The asynchronous version of the driver isin the samplefilespg_async. ¢ andpg_asyng. er| .

/* Driver interface declarations */

static ErlDrvData start(ErlDrvPort port, char *command);

static void stop(ErlDrvData drv_data);

static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);

static void ready io(ErlDrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pqg driver entry = {

60 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

NULL,
start,
stop,
NULL,
ready io,
ready io,
"pg_async",
NULL,
NULL,
control,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL

}i

typedef struct our data t {

PGconn* conn;

ErlDrvPort port;

int socket;

int connecting;
} our data t;

init */

output */

ready input */

ready output */

the name of the driver */
finish */

handle */

timeout */
outputv */
ready async */
flush */

call */

event */

Some things have changed from pg_sync.c: we use the entry ready_io for ready_input and
r eady_out put , which is called from the emulator only when there is input to be read from the socket. (Actualy,
the socket isused inasel ect function inside the emulator, and when the socket is signaled, indicating there is data
toread, ther eady_i nput entry iscalled. More about this below.)

Our driver datais also extended, we keep track of the socket used for communication with postgres, and also the port,
which is needed when we send datato the port with dr i ver _out put . Wehaveaflagconnect i ng totell whether
the driver is waiting for a connection or waiting for the result of a query. (Thisis needed, astheentry r eady _i o is
called both when connecting and when thereis a query result.)

static int do _connect(const char *s, our data t* data)

{

PGconn* conn = PQconnectStart(s);
if (PQstatus(conn) == CONNECTION_BAD) {

ei x buff x;

ei x new with version(&x);
encode _error(&x, conn);

PQfinish(conn);
conn = NULL;

driver output(data->port, x.buff, x.index);

ei x free(&x);

}

PQconnectPoll(conn);

int socket = PQsocket(conn);

data->socket = socket;
driver select(data->port,
driver select(data->port,

data->conn = conn;
data->connecting = 1;
return 0;

Ericsson AB. All Rights Reserved

(ErlDrvEvent)socket, DO READ, 1);
(ErlDrvEvent)socket, DO WRITE, 1);

.» Erlang Run-Time System Application (ERTS) | 61

1.9 How to Implement a Driver

Theconnect function looks a bit different too. We connect using the asynchronous PQconnect St art function.
After the connection is started, we retrieve the socket for the connection with PQsocket . This socket is used with the
driver_sel ect functionto wait for connection. When the socket is ready for input or for output, ther eady_i o
functionis called.

Noticethat we only returndata(withdr i ver _out put) if thereisan error here, otherwise we wait for the connection
to be completed, in which case our r eady _i o function iscalled.

static int do select(const char* s, our data t* data)
{
data->connecting = 0;
PGconn* conn = data->conn;
/* if there's an error return it now */
if (PQsendQuery(conn, s) == 0) {
ei x buff x;
ei x new with version(&x);
encode error(&x, conn);
driver output(data->port, x.buff, x.index);
ei x free(&x);
¥
/* else wait for ready output to get results */
return 0;

Thedo_sel ect function initiates a select, and returns if there is no immediate error. The result is returned when
ready_ioiscaled.

static void ready io(ErlDrvData drv_data, ErlDrvEvent event)
{
PGresult* res = NULL;
our data t* data = (our data t*)drv data;
PGconn* conn = data->conn;
el x buff x;
el x new with version(&x);
if (data->connecting) {
ConnStatusType status;
PQconnectPoll(conn);
status = PQstatus(conn);
if (status == CONNECTION OK)
encode ok(&x);
else if (status == CONNECTION BAD)
encode error(&x, conn);
} else {
PQconsumeInput(conn);
if (PQisBusy(conn))
return;
res = PQgetResult(conn);
encode result(&x, res, conn);
PQclear(res);
for (;;) {
res = PQgetResult(conn);
if (res == NULL)
break;
PQclear(res);

}

if (x.index > 1) {
driver output(data->port, x.buff, x.index);
if (data->connecting)

62 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

driver select(data->port, (ErlDrvEvent)data->socket, DO WRITE, 0);
}

ei x free(&x);

Ther eady_i o function is called when the socket we got from postgres is ready for input or output. Here we first
check if we are connecting to the database. In that case, we check connection status and return OK if the connection is
successful, or error if it isnot. If the connection is not yet established, we simply return; r eady_i o iscalled again.

If we have a result from a connect, indicated by having data in the x buffer, we no longer need to select on output
(ready_out put), soweremovethisby calingdri ver _sel ect.

If we are not connecting, we wait for results from a PQsendQuer y, so we get the result and return it. The encoding
is done with the same functions asin the earlier example.

Error handling isto be added here, for example, checking that the socket isstill open, but thisisonly asimple example.

The Erlang part of the asynchronous driver consists of the samplefilepg_async. er | .

-module(pg _async).

-define (DRV_CONNECT, $C).
-define (DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).

-export([connect/1, disconnect/1l, select/2]).

connect(ConnectStr) ->
case erl ddll:load driver(".", "pg async") of
ok -> ok;
{error, already loaded} -> ok;
_ -> exit({error, could not load driver})
end,
Port = open port({spawn, ?MODULE}, [binary]),
port control(Port, ?DRV_CONNECT, ConnectStr),
case return port data(Port) of
ok ->
{ok, Port};
Error ->
Error
end.

disconnect(Port) ->
port control(Port, ?DRV_DISCONNECT, ""),
R = return port data(Port),
port close(Port),
R.

select(Port, Query) ->
port control(Port, ?DRV_SELECT, Query),
return port data(Port).

return _port data(Port) ->
receive
{Port, {data, Data}} ->
binary to term(Data)
end.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 63

1.9 How to Implement a Driver

The Erlang code is slightly different, as we do not return the result synchronously from port _cont r ol , instead we
getitfromdri ver _out put asdatainthe message queue. Thefunctionr et ur n_por t _dat a abovereceivesdata
from the port. Asthe dataisin binary format, weuse bi nary_t o_t er m 1 to convert it to an Erlang term. Notice
that the driver isopened in binary mode (open_port/ 2 iscaled with option [bi nar y]). Thismeansthat data sent
from the driver to the emulator is sent as binaries. Without option bi nar y, they would have been lists of integers.

1.9.6 An Asynchronous Driver Using driver_async

Asafinal example we demonstrate the use of dr i ver _async. We aso use the driver term interface. The driver is
written in C++. This enables us to use an algorithm from STL. We use the next _per nut at i on algorithm to get
the next permutation of alist of integers. For large lists (> 100,000 elements), this takes some time, so we perform
this as an asynchronous task.

The asynchronous API for drivers is complicated. First, the work must be prepared. In the example, thisis donein
out put . We could have used cont r ol , but we want some variation in the examples. In our driver, we alocate
a structure that contains anything that is needed for the asynchronous task to do the work. Thisis done in the main
emulator thread. Then the asynchronousfunctioniscalled from adriver thread, separate from the main emul ator thread.
Noticethat thedriver functionsare not re-entrant, so they are not to be used. Finally, after the functioniscompleted, the
driver callback r eady_async is called from the main emulator thread, thisis where we return the result to Erlang.
(We cannot return the result from within the asynchronous function, as we cannot call the driver functions.)

The following code is from the sample file next _per m cc. The driver entry looks like before, but also contains
the callback r eady_async.

static ErlDrvEntry next perm driver entry = {

NULL, /* init */

start,

NULL, /* stop */

output,

NULL, /* ready input */
NULL, /* ready output */
"next_perm", /* the name of the driver */
NULL, /* finish */

NULL, /* handle */

NULL, /* control */
NULL, /* timeout */
NULL, /* outputv */
ready async,

NULL, /* flush */

NULL, /* call */

NULL /* event */

Theout put function allocates the work area of the asynchronous function. Aswe use C++, we use a struct, and stuff
the data in it. We must copy the original data, it is not valid after we have returned from the out put function, and
the do_per mfunction is called later, and from another thread. We return no data here, instead it is sent later from
ther eady_async calback.

Theasync_dat a is passed to the do_per mfunction. We do not useaasync_f r ee function (the last argument
todri ver _async),itisonly used if thetask is cancelled programmatically.

struct our _async data {
bool prev;
vector<int> data;
our_async_data(ErlDrvPort p, int command, const char* buf, int len);

64 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.9 How to Implement a Driver

}i

our_async_data::our _async data(ErlDrvPort p, int command,
const char* buf, int len)
: prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))

{
}
static void do perm(void* async data);

static void output(ErlDrvData drv_data, char *buf, int len)

{
if (*buf < 1 || *buf > 2) return;
ErlDrvPort port = reinterpret cast<ErlDrvPort>(drv_data);
void* async data = new our _async data(port, *buf, buf+l, len);
driver async(port, NULL, do perm, async data, do free);

}

Inthedo_per mwe do the work, operating on the structure that was allocated in out put .

static void do perm(void* async data)

{
our_async _data* d = reinterpret cast<our async data*>(async data);
if (d->prev)
prev_permutation(d->data.begin(), d->data.end());
else
next permutation(d->data.begin(), d->data.end());
}

In the r eady_async function the output is sent back to the emulator. We use the driver term format instead
of ei . This is the only way to send Erlang terms directly to a driver, without having the Erlang code to call
bi nary_to_ternt 1. Inthe simple example this works well, and we do not need to use ei to handle the binary
term format.

When the datais returned, we deallocate our data

static void ready async(ErlDrvData drv_data, ErlDrvThreadData async data)
{
ErlDrvPort port = reinterpret cast<ErlDrvPort>(drv_data);
our _async data* d = reinterpret cast<our async data*>(async data);
int n = d->data.size(), result n = n*2 + 3;
ErlDrvTermData *result = new ErlDrvTermData[result n], *rp = result;
for (vector<int>::iterator i = d->data.begin();
i I= d->data.end(); ++i) {
*rp++ = ERL DRV _INT;
*rp++ = *i;

¥

*rp++ = ERL DRV _NIL;
*rp++ = ERL DRV _LIST;
*rp++ = n+l;

driver output term(port, result, result n);
delete[] result;
delete d;

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 65

1.10 Inet Configuration

Thisdriver is called like the others from Erlang. However, aswe use dr i ver _out put _t er m there is no need to
cal bi nary_t o_t er m The Erlang codeisin the samplefilenext _perm erl .

Theinput is changed into alist of integers and sent to the driver.

-module(next perm).
-export([next perm/1, prev _perm/1l, load/0, all perm/1]).
load() ->

case whereis(next perm) of
undefined ->

case erl ddll:load driver(".", "next perm") of
ok -> ok;
{error, already loaded} -> ok;
E -> exit(E)

end,

Port = open port({spawn, "next perm"}, []),
register(next perm, Port);
->

ok

end.

list to integer binaries(L) ->
[<<I:32/integer-native>> || I <- L].

next perm(L) ->
next perm(L, 1).

prev_perm(L) ->
next perm(L, 2).

next perm(L, Nxt) ->

load(),
B = list to integer binaries(L),
port control(next perm, Nxt, B),
receive

Result ->

Result

end.

all perm(L) ->
New = prev_perm(L),
all perm(New, L, [New]).

all perm(L, L, Acc) ->
Acc;
all perm(L, Orig, Acc) ->
New = prev_perm(L),
all perm(New, Orig, [New | Accl).

1.10 Inet Configuration
1.10.1 Introduction

This section describes how the Erlang runtime system is configured for IP communication. It also explains how you
can configure it for your needs by a configuration file. The information is primarily intended for users with special
configuration needs or problems. There is normally no need for specific settings for Erlang to function properly on
acorrectly 1P-configured platform.

66 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 Inet Configuration

When Erlang starts up it reads the Kernel variable i net r ¢, which, if defined, is to specify the location and name
of auser configuration file. Example:

% erl -kernel inetrc '"./cfg files/erl inetrc"'

Noticethat theuse of an. i net r ¢ file, which was supported in earlier Erlang/OTP versions, is now obsolete.

A second way to specify the configuration file is to set environment variable ERL_|I NETRC to the full name of the
file. Example (bash):

% export ERL INETRC=./cfg files/erl inetrc

Notice that the Kernel variablei net r ¢ overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed mode,
Erlang uses default configuration settings and a native lookup method that works correctly under most circumstances.
Erlang reads no information from system i net configuration files (such as / et ¢/ host. conf and /et c/
nssw t ch. conf)inthese modes, exceptfor/ et ¢/ resol v. conf and/ et ¢/ host s that isread and monitored
for changes on Unix platforms for the internal DNSclienti net _res(3).

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere and reads system
i net configuration filesfor thisinformation. Any hosts and resolver information found is also recorded, but not used
aslong as Erlang is configured for native lookups. The information becomes useful if the lookup method is changed
to'file' or'dns', seebeow.

Native lookup (system calls) is aways the default resolver method. Thisistruefor all platforms, except VxWorks and
OSE Deltawhere' fil e' or' dns' isused (inthat priority order).

On Windows platforms, Erlang searches the system registry rather than looks for configuration files when started in
long name distributed mode.

1.10.2 Configuration Data

Erlang records the following datain alocal databaseif found in systemi net configuration files (or system registry):

e Hostnames and host addresses
e Domain name

* Nameservers

e Search domains

* Lookup method

This data can also be specified explicitly in the user configuration file. Thisfile is to contain lines of configuration
parameters (each terminated with a full stop). Some parameters add data to the configuration (such as host and
nameserver), others overwrite any previous settings (such as domain and lookup). The user configuration fileis always
examined last in the configuration process, making it possible for the user to override any default values or previously
made settings. Call i net : get _rc() toview the state of thei net configuration database.

The valid configuration parameters are as follows:
{file, Format, File}.

Format = atom()

File = string()

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 67

1.10 Inet Configuration

Specify a system file that Erlang is to read configuration data from. For mat tells the parser how the file isto
be interpreted:

¢ resol v (Unix resolv.conf)

e host _conf_freebsd (FreeBSD host.conf)
¢ host _conf _bsdos (BSDOS host.conf)

e host _conf _l i nux (Linux host.conf)

e« nsswi tch_conf (Unix nsswitch.conf)

e host s (Unix hosts)

Fi | e isto specify the filename with full path.
{resolv_conf, File}.
File = string()

Specify a system file that Erlang is to read resolver configuration from for the internal DNS client
i net _res(3),andmonitor for changes, even if it does not exist. The path must be absolute.

This can override the configuration parameters nanmeser ver and sear ch depending on the contents of the
specified file. They can also change any time in the future reflecting the file contents.

If the file is specified as an empty string " ", no file is read or monitored in the future. This emulates the old
behavior of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified, it defaults to /et c/resol v. conf unless environment variable
ERL_| NET_ETC DI Ris set, which defines the directory for thisfile to some maybe other than/ et c.

{hosts file, File}.
File = string()

Specify a system file that Erlang is to read resolver configuration from for the internal hosts file resolver, and
monitor for changes, even if it does not exist. The path must be absolute.

These host entries are searched after all added with {fil e, hosts, File} aboveor {host, IP,
Al i ases} below when lookup optionf i | e isused.

If the file is specified as an empty string " ", no file is read or monitored in the future. This emulates the old
behavior of not configuring the DNS client when the node is started in short name distributed mode.

If this parameter is not specified, it defaults to /etc/hosts unless environment variable
ERL | NET_ETC DI Ris set, which defines the directory for thisfile to some maybe other than/ et c.

{registry, Type}.

Type = atom()

Specify a system registry that Erlang is to read configuration data from. wi n32 isthe only valid option.
{host, IP, Aliases}.

IP = tuple()

Aliases = [string()]

Add host entry to the hosts table.
{domai n, Donai n}.

Domain = string()

Set domain hame.

68 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.10 Inet Configuration

{naneserver, IP [,Port]}.

I P = tuple()

Port = integer()

Add address (and port, if other than default) of the primary nameserver to usefori net _res(3).
{alt_naneserver, |IP [,Port]}.

I P = tuple()

Port = integer()

Add address (and port, if other than default) of the secondary nameserver fori net _res(3).
{search, Donuins}.

Domains = [string()]

Add search domainsfori net _res(3).
{l ookup, Methods}.

Met hods = [atom()]

Specify lookup methods and in which order to try them. The valid methods are as follows:

e native (usesystem cals)
« fil e (usehost dataretrieved from system configuration files and/or the user configuration file)
e dns (usethe Erlang DNSclienti net _res(3) for nameserver queries)

The lookup method st ri ng tries to parse the hosthame as an IPv4 or IPv6 string and return the resulting IP
address. Itisautomatically tried first whennat i ve isnot inthe Met hods list. To skipitin thiscase, the pseudo
lookup method nost r i ng can beinserted anywhere in the Met hods list.

{cache_size, Size}.

Size = integer()

Set the resolver cache size. Defaults to 100 DNS records.
{cache_refresh, Tine}.

Time = integer()

Set how often (in milliseconds) the resolver cachefori net _res(3) isrefreshed (that is, expired DNS records
are deleted). Defaultsto 1 hour.

{tinmeout, Tine}.

Time = integer()

Set thetimeto wait until retry (in milliseconds) for DNS queriesmadeby i net _r es(3) . Defaultsto 2 seconds.
{retry, N}.

N = integer()

Set the number of DNS queriesi net _r es(3) will try before giving up. Defaultsto 3.
{inet6, Bool}.

Bool = true | false

Tellsthe DNSclienti net _r es(3) tolook up IPv6 addresses. Defaultstof al se.
{usevc, Bool}.

Bool = true | false

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 69

1.10 Inet Configuration

Tellsthe DNSclienti net _r es(3) touse TCP (Virtual Circuit) instead of UDP. Defaultstof al se.
{edns, Version}.
Version = false | O

Sets the EDNS version that i net _res(3) will use. The only allowed version is zero. Defaults to f al se,
which means not to use EDNS.

{udp_payl oad_si ze, Size}.
N = integer()

Sets the allowed UDP payload size i net _r es(3) will advertise in EDNS queries. Also sets the limit when
the DNS query will be deemed too large for UDP forcing a TCP query instead; this is not entirely correct, as
the advertised UDP payload size of the individual nameserver iswhat is to be used, but this simple strategy will
do until amore intelligent (probing, caching) algorithm needs to be implemented. Default to 1280, which stems
from the standard Ethernet MTU size.

{udp, Mbdul e}.

Modul e = atom()

Tell Erlang to use another primitive UDP modulethani net _udp.
{tcp, Modul e}.

Modul e = atom()

Tell Erlang to use another primitive TCP modulethani net _t cp.
cl ear _hosts.

Clear the hosts table.
cl ear _ns.

Clear the list of recorded nameservers (primary and secondary).
cl ear _search.

Clear the list of search domains.

1.10.3 User Configuration Example

Assume that a user does not want Erlang to use the native lookup method, but wants Erlang to read all information
necessary from start and use that for resolving names and addresses. If lookup fails, Erlang is to request the data from
anameserver (using the Erlang DNS client, set to use EDNS allowing larger responses). The resolver configuration
is updated when its configuration file changes. Also, DNS records are never to be cached. The user configuration file
(inthisexamplenamed er | _i net r c, stored indirectory . / cf g_fi | es) can then look asfollows (Unix):

% -- ERLANG INET CONFIGURATION FILE --

% read the hosts file

file, hosts, "/etc/hosts"}.

% add a particular host

host, {134,138,177,105}, ["finwe"]}.

%% do not monitor the hosts file

{hosts file, ""}.

%% read and monitor nameserver config from here
{resolv_conf, "/usr/local/etc/resolv.conf"}.
%% enable EDNS

{edns,0}.

%% disable caching

{cache size, 0}.

° s o = P o

70 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

%% specify lookup method
{lookup, [file, dns]}.

And Erlang can, for example, be started as follows:

% erl -sname my node -kernel inetrc '"./cfg files/erl inetrc

1.11 External Term Format

1.11.1 Introduction

The external term format is mainly used in the distribution mechanism of Erlang.

As Erlang has a fixed number of types, there is no need for a programmer to define a specification for the external
format used within some application. All Erlang terms have an external representation and the interpretation of the
different terms is application-specific.

InErlangtheBIF erl ang: term to_bi nary/ 1, 2 isusedto convert aterminto the external format. To convert
binary data encoding to aterm, the BIF er |l ang: bi nary_to_tern 1c> isused.

The distribution does thisimplicitly when sending messages across node boundaries.

The overall format of the term format is as follows:

1 1 N

131 Tag Dat a

Table 11.1: Term Format

Note:

When messages are passed between connected nodes and a distribution header is used, the first byte containing
the version number (131) is omitted from the termsthat follow the distribution header. Thisis becausethe version
number isimplied by the version number in the distribution header.

The compressed term format is as follows:

1 1 4 N
131 80 Unconpr essedSi ze 211 b-
P conpr essedDat a

Table 11.2: Compressed Term Format

Uncompressed size (unsigned 32-bit integer in big-endian byte order) is the size of the data before it was compressed.
The compressed data has the following format when it has been expanded:

1 Uncompressed Size

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 71

1.11 External Term Format

Tag Dat a

Table 11.3: Compressed Data Format when Expanded

Note:

As from ERTS 5.10 (OTP R16) support for UTF-8 encoded atoms has been introduced in the external format.
However, only characters that can be encoded using Latin-1 (ISO-8859-1) are currently supported in atoms. The
support for UTF-8 encoded atoms in the external format has been implemented to be able to support all Unicode
characters in atoms in some future release. Until full Unicode support for atoms has been introduced, it is an
error to pass atoms containing characters that cannot be encoded in Latin-1, and the behavior isundefined.

When distribution flag DFLAG _UTF8_ATOMS has been exchanged between both nodes in the distribution
handshake, all atoms in the distribution header are encoded in UTF-8, otherwise in Latin-1. The two
new tags ATOM UTF8 EXT and SMALL_ATOM UTF8_ EXT are only used if the distribution flag
DFLAG_UTF8_ATOMS has been exchanged between nodes, or if an atom containing characters that cannot be
encoded in Latin-1 is encountered.

The maximum number of allowed characters in an atom is 255. In the UTF-8 case, each character can need 4
bytes to be encoded.

1.11.2 Distribution Header

Asfrom ERTS5.7.2 the old atom cache protocol was dropped and anew one wasintroduced. This protocol introduced
the distribution header. Nodes with an ERTS version earlier than 5.7.2 can still communicate with new nodes, but no
distribution header and no atom cache are used.

The distribution header only contains an atom cache reference section, but can in the future contain more information.
The distribution header precedes one or more Erlang terms on the external format. For more information, see the
documentation of the protocol between connected nodes in the distribution protocol documentation.

ATOM_CACHE_REF entrieswith corresponding At onCacheRef er encel ndex interms encoded on the externa
format following a distribution header refer to the atom cache references made in the distribution header. The rangeis
0<=At onmCacheRef er encel ndex < 255, that is, at most 255 different atom cache references from the following
terms can be made.

The distribution header format is as follows:

1 1 1 NumberOfAtoTOCacheRefs 2+1 N |0
131 68 Nurfber O At onCacheRgfs Fl ags At onCacheRef s

Table 11.4: Distribution Header Format

Fl ags consist of Number OF At onCacheRef s/ 2+1 bytes, unless Nunber OF At onCacheRef s is 0. If
Number O At onCacheRef s is 0, Fl ags and At onCacheRef s are omitted. Each atom cache reference has
a half byte flag field. Flags corresponding to a specific At onCacheRef er encel ndex are located in flag byte
number At onCacheRef er encel ndex/ 2. Flag byte 0 is the first byte after the Nunber OF At onCacheRef s
byte. Flags for an even At ontCacheRef er encel ndex arelocated in the least significant half byte and flags for an
odd At onCacheRef er encel ndex arelocated in the most significant half byte.

72 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

Theflag field of an atom cache reference has the following format:

1 bit 3 bits

NewCacheEnt r yFl ag Segrent | ndex

Table 11.5:

The most significant bit is the NewCacheEnt r yFl ag. If set, the corresponding cache reference is new. The three
least significant bits are the Segrrent | ndex of the corresponding atom cache entry. An atom cache consists of 8
segments, each of size 256, that is, an atom cache can contain 2048 entries.

After flag fields for atom cache references, another half byte flag field is located with the following format:

3 hits 1 bit

Current | yUnused LongAt ons

Table 11.6:

The least significant bit in that half byte is flag LongAt ons. If it is set, 2 bytes are used for atom lengths instead
of 1 bytein the distribution header.

After the Fl ags field follow the At omCacheRef s. The first At onCacheRef is the one corresponding to
At ontCacheRef er encel ndex 0. Higher indices follow in sequence up to index Nunber OfF At omCacheRef s
- 1.

If the NewCacheEnt r yFI ag for the next At onCacheRef hasbeen set, aNewAt omCacheRef onthefollowing
format follows:

1 1]2 Length

I nt er nal Segnent | ndex Length At onText

Table 11.7:

I nt er nal Segnent | ndex together with the Segnent | ndex completely identify the location of an atom
cache entry in the atom cache. Lengt h is the number of bytes that At onTText consists of. Length is a 2
byte big-endian integer if flag LongAt ons has been set, otherwise a 1 byte integer. When distribution flag
DFLAG UTF8_ ATQOMS has been exchanged between both nodes in the distribution handshake, characters in
At onTText are encoded in UTF-8, otherwise in Latin-1. The following CachedAt onRef s with the same
Segrent | ndex and | nt er nal Segnent | ndex as this NewAt onCacheRef refer to this atom until a new
NewAt ontCacheRef with the same Segnent | ndex and | nt er nal Segnent | ndex appear.

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

If the NewCacheEnt r yFl ag for the next At onCacheRef hasnot been set, aCachedAt onRef onthefollowing
format follows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 73

1.11 External Term Format

I nt er nal Segnent | ndex

Table 11.8:

I nt er nal Segnent | ndex together with the Segmrent | ndex identify the location of the atom cache entry in the
atom cache. The atom corresponding to this CachedAt onRef is the latest NewAt onCacheRef preceding this
CachedAt onRef inanother previously passed distribution header.

1.11.3 ATOM_CACHE_REF

1 1

82 At onCacheRef er encel ndex

Table 11.9: ATOM_CACHE_REF

Refers to the atom with At onCacheRef er encel ndex in the distribution header.

1.11.4 SMALL INTEGER_EXT

1 1

97 I nt

Table 11.10: SMALL_INTEGER_EXT

Unsigned 8-bit integer.

1.11.5 INTEGER_EXT

1 4

98 I nt

Table 11.11: INTEGER_EXT

Signed 32-bit integer in big-endian format.

1.11.6 FLOAT_EXT

1 31

99 Fl oat string

Table 11.12: FLOAT_EXT

74 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

A float is stored in string format. The format used in sprintf to format the float is "%.20e" (there are more bytes
allocated than necessary). To unpack the float, use sscanf with format " %ol f".

Thisterm isused in minor version O of the external format; it has been superseded by NEW FLOAT _EXT.

1.11.7 ATOM_EXT

1 2 Len

100 Len At omNane

Table 11.13: ATOM_EXT

An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len numbers of 8-bit Latin-1
characters that forms the At oniName. The maximum allowed value for Len is 255.

1.11.8 REFERENCE_EXT

1 N 4 1

101 Node ID Creation

Table 11.14: REFERENCE_EXT

Encodes areference object (an object generated with erlang: make ref/0). The Node termisan encoded atom, that is,
ATOM _EXT, SMALL_ATOM _EXT, or ATOM_CACHE_REF. The | Dfield contains a big-endian unsigned integer, but
isto beregarded asuninterpreted data, asthisfield is node-specific. Cr eat i on isabyte containing a node serial
number, which makes it possible to separate old (crashed) nodes from a new one.

In | D, only 18 bits are significant; the rest are to be 0. In Cr eat i on, only two bits are significant; the rest are to
be 0. See NEW REFERENCE_EXT.

1.11.9 PORT_EXT

1 N 4 1
102 Node ID Creation
Table 11.15: PORT_EXT

Encodesaport object (obtained from er | ang: open_port/ 2). Thel Disanode-specific identifier for alocal port.
Port operations are not allowed across node boundaries. The Cr eat i on worksjust likein REFERENCE_EXT.

1.11.10 PID_EXT

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 75

1.11 External Term Format

103 Node I D Seri al Creation

Table 11.16: PID_EXT

Encodes a process identifier object (obtained from er | ang: spawn/ 3 or friends). Thel Dand Cr eat i on fields
works just like in REFERENCE_EXT, while the Ser i al field is used to improve safety. In | D, only 15 bits are
significant; the rest are to be 0.

1.11.11 SMALL TUPLE_EXT

1 1 N

104 Arity El enent s

Table 11.17: SMALL_TUPLE_EXT

Encodes atuple. The Ari t y field is an unsigned byte that determines how many elements that follows in section
El enent s.

1.11.12 LARGE_TUPLE_EXT

1 4 N

105 Arity El enent s

Table 11.18: LARGE_TUPLE_EXT

Sameas SMALL_TUPLE_EXT except that Ar i t y isan unsigned 4 byte integer in big-endian format.

1.11.13 MAP_EXT

1 4 N

116 Arity Pairs

Table 11.19: MAP_EXT

Encodesamap. The Ari ty field is an unsigned 4 byte integer in big-endian format that determines the number of
key-value pairs in the map. Key and value pairs (Ki => Vi) are encoded in section Pai r s in the following order:
K1, V1, K2, V2,..., Kn, Vn.Duplicatekeysarenot allowed within the same map.

Asfrom Erlang/OTP 17.0

1.11.14 NIL_EXT

76 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

106

Table 11.20: NIL_EXT

The representation for an empty list, that is, the Erlang syntax [] .

1.11.15 STRING_EXT

1 2 Len

107 Length Characters

Table 11.21: STRING_EXT

String does not have a corresponding Erlang representation, but is an optimization for sending lists of bytes (integer
in the range 0-255) more efficiently over the distribution. Asfield Lengt h isan unsigned 2 byteinteger (big-endian),
implementations must ensure that lists longer than 65535 elements are encoded as LI ST_EXT.

1.11.16 LIST EXT

1 4

108 Length El enent s Tai |

Table 11.22: LIST_EXT

Lengt h isthe number of elementsthat followsin section El enent s. Tai | isthefinal tail of thelist; itisNI L_EXT
for aproper list, but can be any typeif thelist isimproper (for example, [a| b]).

1.11.17 BINARY_EXT

1 4 Len

109 Len Dat a

Table 11.23: BINARY_EXT

Binaries are generated with hit syntax expression or with erlang:list_to _binary/1,
erlang:termto_binary/ 1, orasinput from binary ports. The Len length field is an unsigned 4 byte integer
(big-endian).

1.11.18 SMALL_BIG_EXT

1 1 1 n

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 77

1.11 External Term Format

110 n Si gn d(0) ..d(n-1)

Table 11.24: SMALL_BIG_EXT

Bignums are stored in unary form with aSi gn byte, that is, O if the binum is positiveand 1 if it isnegative. The digits
are stored with the least significant byte stored first. To calculate the integer, the following formula can be used:

B =256
(do*B"0 + d1*BM"1 + d2*B"2 + ...

1.11.19 LARGE_BIG_EXT

d(N-1)*B~(n- 1))

1 1 n
111 Si gn d(0) ..d(n-1)
Table 11.25: LARGE_BIG_EXT
Sameas SMALL_BI G_EXT except that the length field is an unsigned 4 byte integer.
1.11.20 NEW _REFERENCE_EXT
1 2 N 1 N'
114 Len Node Creation ID ...

Table 11.26: NEW_REFERENCE_EXT

Node and Cr eat i on are asin REFERENCE_EXT.

I D contains a sequence of big-endian unsigned integers (4 bytes each, so N' isamultiple of 4), but is to be regarded
as uninterpreted data.

N =4*Len.

In the first word (4 bytes) of | D, only 18 bits are significant, the rest areto be 0. In Cr eat i on, only two bits are
significant, the rest areto be 0.

NEW REFERENCE EXT was introduced with distribution version 4. Inversion 4, N' isto be at most 12.
See REFERENCE_EXT.

1.11.21 SMALL_ATOM_EXT

1 1 Len

115 Len At omNane

Table 11.27: SMALL_ATOM_EXT

78 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.11 External Term Format

An atom is stored with a 1 byte unsigned length, followed by Len numbers of 8-bit Latin-1 characters that formsthe
At omNan®e. Longer atoms can be represented by ATOM _EXT.

Note:

SMALL ATOM EXT was introduced in ERTS 5.7.2 and require an exchange of distribution flag
DFLAG SMALL_ATOM TAGS inthe distribution handshake.

1.11.22 FUN_EXT

1 4 N1 N2 N3 N4 N5
117 Nunfr ee Pi d Mbdul e I ndex Uni q Free
vars ...
Table 11.28: FUN_EXT

Pid
A processidentifier asin Pl D_EXT. Represents the process in which the fun was created.
Modul e

Encoded as an atom, using ATOM_EXT, SMALL_ATOM EXT, or ATOM CACHE_REF. Thisisthe module that
the fun isimplemented in.

| ndex

An integer encoded using SMALL_| NTEGER _EXT or | NTEGER_EXT. It is typically a small index into the
modul€e's fun table.

Uni g

An integer encoded using SMALL | NTEGER _EXT or | NTEGER _EXT. Uni q is the hash value of the parse
for the fun.

Free vars

Nuntr ee number of terms, each one encoded according to its type.

1.11.23 NEW_FUN_EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5
. Free
112 Size | Arity | Unig [Index |[Nunfreel Mdul e dl ndexd duUniqgl Pid var s
Table 11.29: NEW_FUN_EXT
Thisisthe new encoding of internal funs: fun F/ Aandfun(Argl,..) -> ... end.

Si ze
The total number of bytes, including field Si ze.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 79

1.11 External Term Format

Arity
The arity of the function implementing the fun.
Uni g
The 16 bytes MD5 of the significant parts of the Beam file.
| ndex
An index number. Each fun within a module has an unique index. | ndex is stored in big-endian byte order.
Nunfr ee
The number of free variables.
Modul e

Encoded as an atom, using ATOM _EXT, SMALL_ATOM EXT, or ATOM CACHE_REF. Is the module that the
funisimplementedin.

d dl ndex

An integer encoded using SMALL_I NTEGER_EXT or | NTEGER _EXT. Is typically a small index into the
module's fun table.

a duni q

An integer encoded using SMALL | NTEGER _EXT or | NTEGER _EXT. Uni q is the hash value of the parse
treefor the fun.

Pid

A processidentifier asin Pl D_EXT. Represents the process in which the fun was created.
Free vars

Nuntr ee number of terms, each one encoded according to its type.

1.11.24 EXPORT_EXT

1 N1 N2 N3

113 Modul e Functi on Arity

Table 11.30: EXPORT_EXT

Thisterm isthe encoding for external funs: f un M F/ A.
Mbdul e and Funct i on are atoms (encoded using ATOM_EXT, SMALL_ATOM EXT, or ATOM_CACHE_REF).
Arity isaninteger encoded using SMALL_| NTEGER_EXT.

1.11.25 BIT_BINARY_EXT

1

Len

77

Len

Bits

Dat a

Table 11.31:

80 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

BIT_BINARY_EXT

1.12 Distribution Protocol

This term represents a bitstring whose length in bits does not have to be amultiple of 8. The Len field isan unsigned
4 byte integer (big-endian). The Bi t s field is the number of bits (1-8) that are used in the last byte in the data field,
counting from the most significant bit to the least significant.

1.11.26 NEW_FLOAT EXT

1 8

70 | EEE f| oat

Table 11.32: NEW_FLOAT_EXT

A float is stored as 8 bytes in big-endian |EEE format.
Thisterm is used in minor version 1 of the external format.

1.11.27 ATOM UTF8 EXT

1 2 Len

118 Len At omNane

Table 11.33: ATOM_UTF8_EXT

Anatom isstored with a2 byte unsigned length in big-endian order, followed by Len bytes containing the At onmNare
encoded in UTF-8.

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

1.11.28 SMALL ATOM UTF8_EXT

1 1 Len

119 Len At omNane

Table 11.34: SMALL ATOM_UTF8_EXT

Anatomisstored with a1 byte unsigned length, followed by Len bytes containing the At omNane encoded in UTF-8.
Longer atoms encoded in UTF-8 can be represented using ATOM_UTF8_EXT.

For more information on encoding of atoms, see the note on UTF-8 encoded atoms in the beginning of this section.

1.12 Distribution Protocol

Thisdescription isfar from complete. It will be updated if the protocol is updated. However, the protocoals, both from
Erlang nodes to the Erlang Port Mapper Daemon (EPM D) and between Erlang nodes are stable since many years.

The distribution protocol can be divided into four parts:

* Low-level socket connection (1)
« Handshake, interchange node name, and authenticate (2)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 81

1.12 Distribution Protocol

e Authentication (doneby net _kernel (3)) (3)
e Connected (4)

A node fetches the port number of another node through the EPMD (at the other host) to initiate a connection request.

For each host, where a distributed Erlang node is running, also an EPMD is to be running. The EPMD can be started
explicitly or automatically as aresult of the Erlang node startup.

By default the EPMD listens on port 4369.

(3) and (4) above are performed at the samelevel but thenet _ker nel disconnectsthe other nodeif it communicates
using an invalid cookie (after 1 second).

Theintegersin al multibyte fields are in big-endian order.

1.12.1 EPMD Protocol
The reguests served by the EPMD are summarized in the following figure.

Figure 12.1: Summary of EPMD Requests

Each request * _REQis preceded by a 2 byte length field. Thus, the overall request format is as follows:

2 n

Length Request

Table 12.1: Request Format

Register a Node in EPMD

When adistributed node is started it registersitself in the EPMD. The message ALI VE2_ _REQdescribed below is sent
from the node to the EPMD. The response from the EPMD isALI VE2_RESP.

1 2 1 1 2 2 2 Nlen 2 Elen

120 Port No NodeTypePr ot oldiogrest Ve.m[iersm Ver si oMl en NodeNang El en Extra

Table 12.2: ALIVE2_REQ (120)

Por t No
The port number on which the node accept connection requests.
NodeType
77 = normal Erlang node, 72 = hidden node (C-node), ...
Pr ot ocol
0=TCP/IPv4, ...
H ghest Ver si on
The highest distribution version that this node can handle. The valuein Erlang/OTP R6B and later is 5.

82 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

Lowest Ver si on
The lowest distribution version that this node can handle. The value in Erlang/OTP R6B and later is 5.
Nl en
The length (in bytes) of field NodeNane.
NodeNane
The node name as an UTF-8 encoded string of NI en bytes.
El en
The length of field Ext r a.
Extra
Extrafield of El en bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the connection is
closed, the node is automatically unregistered from the EPMD.

The response message ALI VE2_RESP is asfollows:

1 1 2

121 Resul t Creation

Table 12.3: ALIVE2_RESP (121)

Result = 0 -> ok, result > 0 -> error.

Unregister a Node from EPMD

A node unregisters itself from the EPMD by closing the TCP connection to EPMD established when the node was
registered.

Get the Distribution Port of Another Node

When one node wants to connect to another node it starts with a PORT_PLEASE2_ REQrequest to the EPMD on the
host where the node resides to get the distribution port that the node listens to.

1 N

122 NodeNane

Table 12.4: PORT_PLEASE2_REQ (122)

whereN =Lengt h - 1.

1 1

119 Resul t

Table 12.5: PORT2_RESP (119) Response Indicating Error, Result > 0

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 83

1.12 Distribution Protocol

or
1 1 2 1 1 2 2 2 Nlen 2 Elen
119 |Result |PortNo \IodeTyp?r otbi:glrest\lar\&résirk/ers dd en NodeNang Elen |>Extra
Table 12.6: PORT2_RESP, Result = 0

If Resul t >0, the packet only consistsof [119, Resul t].

The EPMD closes the socket when it has sent the information.

Get All Registered Names from EPMD

Thisrequest isused through the Erlang function net _adm names/ 1, 2. A TCP connection is opened to the EPMD
and this request is sent.

110

Table 12.7: NAMES_REQ (110)

The response for aNAMES_REQis as follows:

4

EPMDPor t No

Nodel nf o*

Table 12.8: NAMES_RESP

Nodel nf o isastring written for each active node. When all Nodel nf o has been written the connection is closed
by the EPMD.

Nodel nf o is, asexpressed in Erlang:

io:format("name ~ts at port ~p~n", [NodeName, Port]).

Dump All Data from EPMD

Thisrequest isnot really used, it is to be regarded as a debug feature.

100

Table 12.9: DUMP_REQ

The response for a DUMP_REQis asfollows:

84 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

4

EPNMDPor t No Nodel nf o*

Table 12.10: DUMP_RESP

Nodel nf o isastring written for each node kept in the EPMD. When al Nodel nf o has been written the connection
is closed by the EPMD.

Nodel nf o is, as expressed in Erlang:

io:format("active name ~ts at port ~p, fd = ~p~n",
[NodeName, Port, Fd]).

or

io:format("old/unused name ~ts at port ~p, fd = ~p ~n",

[NodeName, Port, Fd]).

Kill EPMD
This request kills the running EPMD. It is almost never used.

1

107

Table 12.11: KILL_REQ
Theresponsefor aKl LL_REQisasfollows:

2

OKString
Table 12.12: KILL_RESP
where OKSt ri ng is"OK".
STOP_REQ (Not Used)
1 n
115 NodeNarme

Table 12.13: STOP_REQ

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 85

1.12 Distribution Protocol

wheren=Lengt h - 1.
The current implementation of Erlang does not care if the connection to the EPMD is broken.

Theresponse for a STOP_REQis asfollows:

.
OKString
Table 12.14: STOP_RESP
where OKSt r i ng is"STOPPED".
A negative response can look as follows:
.
NOKSt ri ng

Table 12.15: STOP_NOTOK_RESP

where NOKSt r i ng is"NOEXIST".

1.12.2 Distribution Handshake

This section describes the distribution handshake protocol introduced in Erlang/OTP R6. This description was
previously located in $ERL_TOP/ | i b/ kernel /i nternal _doc/ di stri buti on_handshake. t xt and
has more or less been copied and "formatted” here. It has been almost unchanged since 1999, but the handshake has
not changed much since then either.

General

The TCP/IP distribution uses a handshake that expects a connection-based protocol, that is, the protocol does not
include any authentication after the handshake procedure.

This is not entirely safe, as it is vulnerable against takeover attacks, but it is a tradeoff between fair safety and
performance.

The cookies are never sent in cleartext and the handshake procedure expects the client (called A) to be the first one
to prove that it can generate a sufficient digest. The digest is generated with the MD5 message digest algorithm and
the challenges are expected to be random numbers.

Definitions

A challenge is a 32-bit integer in big-endian order. Below the function gen_chal | enge() returns arandom 32-
bit integer used as a challenge.

A digest isa (16 bytes) MD5 hash of the challenge (astext) concatenated with the cookie (astext). Below, the function
gen_di gest (Chal | enge, Cooki e) generatesadigest as described above.

Anout _cooki e isthe cookie used in outgoing communication to a certain node, so that Asout _cooki e for Bis
to correspond with B'si n_cooki e for A and conversely. A'sout _cooki e for Band A'si n_cooki e for B need
not be the same. Below the function out _cooki e(Node) returnsthe current node'sout _cooki e for Node.

86 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

An i n_cooki e is the cookie expected to be used by another node when communicating with us, so that A's
i n_cooki e for B corresponds with B'sout _cooki e for A. Below the functioni n_cooki e(Node) returnsthe
current node'si n_cooki e for Node.

The cookies are text strings that can be viewed as passwords.

Every message in the handshake starts with a 16-bit big-endian integer, which contains the message length (not
counting the two initial bytes). In Erlang this corresponds to option { packet, 2} ingen_t cp(3). Notice that
after the handshake, the distribution switchesto 4 byte packet headers.

The Handshake in Detail
Imagine two nodes, A that initiates the handshake and B that accepts the connection.
1) connect/accept
A connects to B through TCP/IP and B accepts the connection.
2) send_nane/r ecei ve_nane

A sendsaninitial identification to B, which receives the message. The message looks as follows (every "square”
is one byte and the packet header is removed):

R LT oo +----- +o---- +----- oo oo o +
| 'n'|[VersionO|Versionl|Flag0|Flagl|Flag2|Flag3|Name®|Namel| ... |[NameN|
R LT oo +----- +o---- +----- oo oo o A +

'n'isthemessagetag. 'Version0' and 'Versionl' isthe distribution version selected by A, based oninformation from
the EPMD. (16-bit big-endian) 'Flag0' ... 'Flag3' are capability flags, the capabilities are defined in $ERL_TOP/
I'i b/ kernel/include/dist. hrl . (32-bit big-endian) 'Name0' ... 'NameN' is the full node name of A, as
astring of bytes (the packet length denotes how long it is).

3)recv_st at us/send_st at us
B sendsastatus messageto A, which indicatesif the connectionisallowed. Thefollowing status codes are defined:
ok
The handshake will continue.
ok_si mul t aneous

The handshake will continue, but A isinformed that B has another ongoing connection attempt that will be
shut down (simultaneous connect where A's name is greater than B's name, compared literaly).

nok

The handshake will not continue, as B already has an ongoing handshake, which it itself has initiated
(simultaneous connect where B's name is greater than A's).

not _al | owed
The connection is disallowed for some (unspecified) security reason.
alive

A connection to the node is already active, which either means that node A is confused or that the TCP
connection breakdown of a previous node with this name has not yet reached node B. See step 3B below.

The format of the status message is as follows:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 87

1.12 Distribution Protocol

|'s'|StatusO|Statusl| ... |StatusN|
R Fo-m---- R +

'S isthe message tag. 'Status0' ... 'StatusN' is the status as a string (not terminated).
3B) send_st at us/recv_st at us

If status was al i ve, node A answers with another status message containing either t r ue, which means that
the connection is to continue (the old connection from this node is broken), or f al se, which means that the
connection is to be closed (the connection attempt was a mistake.

4) recv_chal | enge/send_chal | enge

If the status was ok or ok_si rmul t aneous, the handshake continues with B sending A another message, the
challenge. The challenge contains the same type of information as the "name" message initially sent from A to
B, plus a 32-hit challenge:

R R +e--- - R +e---- R +o---- +e---- R +----- +----- +----- +- ot +
| 'n'|Version0|Versionl|Flag0|Flagl|Flag2|Flag3|Chale|Chall|Chal2|Chal3|Name0O|Namel| ... |NameN|
R R +e--- - R +e---- R +o---- +e---- R +----- +----- +----- +-.. F----- +

'Chal0' ... 'Chal3' is the challenge as a 32-bit big-endian integer and the other fields are B's version, flags, and
full node name.
5)send_chal | enge_repl y/recv_chal | enge_reply

Now A has generated a digest and its own challenge. Those are sent together in a package to B:

R +---- - +o---- +e--- - R +e---- +----- +----- Y +
| 'r'|Chal®|Chall|Chal2|Chal3|DigeO|Digel|Dige2|Dige3| ... |Digel5|

tometom - +----- +----- +----- +----- +----- +----- +----- R +

'r'isthetag. 'Chal0' ... 'Chal3' is A's challenge for B to handle. 'DigeQ' ... 'Digel5' isthe digest that A constructed
from the challenge B sent in the previous step.

6)recv_chal | enge_ack/send _chal | enge_ack

B checks that the digest received from A is correct and generates a digest from the challenge received from A.
The digest is then sent to A. The message is as follows:

R +---- - +o---- +----- I +
|'a'|Dige0®|Digel|Dige2|Dige3| ... |Digel5|
R +---- - +o---- +----- I +

'd isthetag. 'Dige0’ ... 'Digel5' isthe digest calculated by B for A's challenge.
7) check

A checks the digest from B and the connection is up.

Semigraphic View

A (initiator) B (acceptor)

[TCP COMNECE ========sc==ss=2==s=2=25c2c2os222222 >

88 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

TCP accept

sendiname’ =i-=i= - oioolo ool sl o s s s - >
recv_name
S e S S e ST send_status

recv_status
(if status was 'alive'

send status - - - - - - - - - - - - - - - - - - >
recv_status)
ChB = gen challenge()
(ChB)
Sommsoooooomooooooooooooooooooooooo-o send challenge

recv_challenge
ChA = gen challenge(),
0CA = out cookie(B),

DiA = gen digest(ChB, 0CA)
(ChA, DiA)
send _challenge reply -----------------~---------- >
recv_challenge reply
ICB = in_cookie(A),
check:
DiA == gen digest (ChB, ICB)?
- if OK:
0CB = out cookie(A),
DiB = gen digest (ChA, 0CB)
(DiB)
e T T send challenge ack
recv_challenge ack DONE
ICA = in_cookie(B), - else:
check: CLOSE
DiB == gen digest(ChA, ICA)?
- if OK:
DONE
- else:
CLOSE

Distribution Flags
The following capability flags are defined:
- def i ne(DFLAG_PUBLI SHED, 16#1) .
The node is to be published and part of the global namespace.
- def i ne(DFLAG_ATOM CACHE, 16#2) .
The node implements an atom cache (obsol ete).
- def i ne(DFLAG_EXTENDED REFERENCES, 16#4) .

The node implements extended (3 x 32 hits) references. This is required today. If not present, the connection
isrefused.

-def i ne(DFLAG_DI ST_MONI TOR, 16#8) .

The node implements distributed process monitoring.
- def i ne(DFLAG_FUN_TAGS, 16#10) .

The node uses separate tag for funs (lambdas) in the distribution protocol.
- def i ne(DFLAG DI ST_MONI TOR_NAME, 16#20) .

The node implements distributed named process monitoring.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 89

1.12 Distribution Protocol

- def i ne(DFLAG_HI DDEN_ATOM CACHE, 16#40) .
The (hidden) node implements atom cache (obsol ete).
- defi ne(DFLAG_NEW FUN_TAGS, 16#80) .
The node understand new fun tags.
- def i ne(DFLAG_EXTENDED_PI DS_PORTS, 16#100) .
The node can handle extended pids and ports. Thisis required today. If not present, the connection is refused.

- defi ne(DFLAG_EXPORT_PTR_TAG, 16#200) .
- defi ne(DFLAG_BI T_BI NARI ES, 16#400) .
- defi ne(DFLAG_NEW FLQOATS, 16#800) .

The node understands new float format.

- def i ne(DFLAG_UNI CODE_| O, 16#1000) .
- def i ne(DFLAG_DI ST_HDR_ATOM CACHE, 16#2000) .

The node implements atom cache in distribution header.
- defi ne(DFLAG_SMALL_ATOM TAGS, 16#4000).
The node understand the SMALL_ ATOM_EXT tag.
- defi ne(DFLAG UTF8_ATOMS, 16#10000).
The node understand UTF-8 encoded atoms.

1.12.3 Protocol between Connected Nodes

As from ERTS 5.7.2 the runtime system passes a distribution flag in the handshake stage that enables the use of a
distribution header on all messages passed. Messages passed between nodes have in this case the following format:

4

d

n

m

Lengt h

Di stri buti onHeader

Cont r ol Message

Message

Table 12.16: Format of Messages Passed between Nodes (as from ERTS 5.7.2)

Length

Equal tod+n+m.
Cont r ol Message

A tuple passed using the external format of Erlang.
Message

The message sent to another node using the "' (in external format). Notice that Message is only passed in
combination with aCont r ol Message encoding asend ('!").

Notice that the version number is omitted from the terms that follow a distribution header .

Nodes with an ERTS version earlier than 5.7.2 does not pass the distribution flag that enables the distribution header.
M essages passed between nodes have in this case the following format:

4 1 n m

90 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

Lengt h Type Cont r ol Message Message

Table 12.17: Format of Messages Passed between Nodes (before ERTS 5.7.2)

Length
Equal to1+n+m.
Type
Equal to 112 (pass through).
Cont r ol Message
A tuple passed using the external format of Erlang.
Message

The message sent to another node using the "' (in external format). Notice that Message is only passed in
combination with aCont r ol Message encoding asend ('!").

The Cont r ol Message isatuple, where the first element indicates which distributed operation it encodes:
LI NK

{1, FronPid, ToPid}
SEND

{2, Unused, ToPi d}

Followed by Message.

Unused iskept for backward compatibility.
EXIT

{3, FronPid, ToPid, Reason}
UNLI NK

{4, FronPid, ToPid}
NODE_LI NK

{5}
REG_SEND

{6, FronPid, Unused, ToNane}

Followed by Message.

Unused iskept for backward compatibility.
GROUP_LEADER

{7, FronPid, ToPid}
EXI T2

{8, FronPid, ToPid, Reason}

1.12.4 New Ctrimessages for distrvsn = 1 (Erlang/OTP R4)
SEND TT
{12, Unused, ToPid, TraceToken}

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 91

1.12 Distribution Protocol

Followed by Message.
Unused iskept for backward compatibility.
EXIT_TT
{13, FronPid, ToPid, TraceToken, Reason}
REG _SEND_TT
{16, FronPid, Unused, ToNane, TraceToken}
Followed by Message.
Unused iskept for backward compatibility.
EXIT2_TT
{18, FronPid, ToPid, TraceToken, Reason}

1.12.5 New Ctrimessages for distrvsn = 2

di st rvsn 2 was never used.

1.12.6 New Ctrimessages for distrvsn = 3 (Erlang/OTP R5C)

None, but the version number was increased anyway .

1.12.7 New Ctrimessages for distrvsn = 4 (Erlang/OTP R6)
These are only recognized by Erlang nodes, not by hidden nodes.
MONI TOR_P

{19, FronPid, ToProc, Ref},whereFronPi d=monitoring processand ToPr oc = monitored process
pid or name (atom)

DEMONI TOR_P

{20, FronPid, ToProc, Ref},whereFronPi d=monitoringprocessand ToPr oc =monitored process
pid or name (atom)

Weinclude Fr onPi d just in case we want to trace this.
MONI TOR_P_EXI' T

{21, FronProc, ToPid, Ref, Reason},whereFronProc =monitored process pid or name (atom),
ToPi d = monitoring process, and Reason = exit reason for the monitored process

92 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

1.12 Distribution Protocol

2 Reference Manual

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 93

erl_prim_loader

erl_prim_loader

Erlang module

Thismoduleisused toload all Erlang modulesinto the system. The start script isalso fetched with thislow-level loader.
erl _prim.| oader knows about the environment and how to fetch modules.

Command-line flag - | oader Loader can be used to choose the method used by er| _pri m | oader. Two
Loader methods are supported by the Erlang runtime system: ef i | e andi net .

Exports

get file(Filename) -> {ok, Bin, FullName} | error
Types.
Filename = atom() | string()
Bin = binary()
FullName = string()
Fetches a file using the low-level loader. Fi | enane is either an absolute filename or only the name of the file, for

example, "I i sts. beant' . If aninternal path is set to the loader, this path is used to find the file. Ful | Nane isthe
complete name of the fetched file. Bi n isthe contents of the file asabinary.

Filename can aso be a file in an archive, for example, $OTPROOT/ | i b/ mesia-4.4.7. ezl
mesi a- 4. 4. 7/ ebi n/ mesi a. beam For information about archive files, scecode(3) .

get path() -> {ok, Path}
Types.
Path = [Dir :: string()]

Gets the path set in the loader. The path is set by the i ni t (3) process according to information found in the start
script.

list dir(Dir) -> {ok, Filenames} | error

Types.
Dir = string()
Filenames = [Filename :: string()]

Listsal thefilesin adirectory. Returns{ ok, Fi | enames} if successful, otherwiseerror.Fi | enanes isalist
of the names of al the filesin the directory. The names are not sorted.

Di r canasobeadirectory inanarchive, for example, SOTPROOT/ | i b/ mesi a-4. 4. 7. ez/ mesi a-4. 4.7/
ebi n. For information about archivefiles, see code(3) .

read file info(Filename) -> {ok, FileInfo} | error

Types:
Filename = string()
FileInfo = file:file_info()

Retrieves information about a file. Returns { ok, Fi | el nf o} if successful, otherwiseerror. Filelnfoisa
record f i | e_i nf o, defined in the Kernel include filefi | e. hr| . Include the following directive in the module
from which the function is called:

94 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erl_prim_loader

-include lib("kernel/include/file.hrl").

For more information about therecordfi | e_i nfo,seefil e(3).

Filename can aso be a file in an archive, for example, $OTPROOT/ | i b/ mesi a-4.4.7. ezl
mmesi a- 4. 4. 7/ ebi n/ mesi a. For information about archivefiles, scecode(3) .

read link info(Filename) -> {ok, FileInfo} | error

Types.
Filename = string()
FileInfo = file:file_info()

Worksliker ead_fi |l e_i nf o/ 1 exceptthatif Fi | enanme isasymboliclink, information about thelink isreturned
inthefi | e_i nf orecordandthet ype field of therecordissettosym i nk.

If Fi | enan®e is not a symbolic link, this function returns exactly the same result asread_fil e_i nfo/ 1. On
platforms that do not support symbolic links, this function is aways equivalenttor ead_fil e_i nf o/ 1.

set _path(Path) -> ok
Types:
Path = [Dir :: string()]
Setsthe path of the loader if i ni t (3) interpretsapat h command in the start script.

Command-Line Flags
Theer| _pri m_| oader moduleinterprets the following command-line flags:
-1 oader Loader

Specifiesthename of theloader usedbyer | _pri m | oader.Loader canbeefi | e (usethelocal file system)
ori net (load usingtheboot _ser ver on another Erlang node).

If flag - | oader isomitted, it defaultstoefi | e.
-1 oader _debug

Makestheef i | e loader write some debug information, such as the reason for failures, while it handlesfiles.
-hosts Hosts

Specifies which other Erlang nodes the i net loader can use. This flag is mandatory if flag - | oader i net
is present. On each host, there must be on Erlang node with the er| _boot _ser ver (3), which handles the
load requests. Host s isalist of IP addresses (hostnames are not acceptable).

- set cooki e Cooki e
Specifies the cookie of the Erlang runtime system. Thisflag is mandatory if flag - | oader i net is present.

See Also

init(3), erl _boot_server(3)

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 95

erlang

erlang

Erlang module

By convention, most Built-In Functions (BIFs) areincluded in this module. Some of the BIFs are viewed more or less
as part of the Erlang programming language and are auto-imported. Thus, it is not necessary to specify the module
name. For example, thecallsat om to_| i st (Erl ang) anderl ang: atom to_li st (Erl ang) areidentical.

Auto-imported BIFs are listed without module prefix. BIFs listed with module prefix are not auto-imported.

BIFs can fail for various reasons. All BIFsfail with reason badar g if they are called with arguments of an incorrect
type. The other reasons are described in the description of each individual BIF.

Some BIFs can be used in guard tests and are marked with "Allowed in guard tests'.

Data Types

ext binary()

A binary data object, structured according to the Erlang external term format.
message queue data() = off heap | on_heap

See process_fl ag(nessage_queue_data, MD).

timestamp() =
{MegaSecs :: integer() >= 0,
Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}

See erl ang: ti nestanp/ 0.

time unit() =
integer() >= 1 |
second |
millisecond |
microsecond |
nanosecond |
native |
perf counter |
deprecated_tinme_unit()

Supported time unit representations:
PartsPerSecond :: integer() >=1

Time unit expressed in parts per second. That is, the time unit equals 1/ Par t sPer Second second.
second

Symbolic representation of the time unit represented by the integer 1.
mllisecond

Symbolic representation of the time unit represented by the integer 1000.
m cr osecond

Symbolic representation of the time unit represented by the integer 1000000.
nanosecond

Symbolic representation of the time unit represented by the integer 2000000000.

96 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

native
Symbolic representation of the native time unit used by the Erlang runtime system.

The nat i ve time unit is determined at runtime system start, and remains the same until the runtime system
terminates. If aruntime system is stopped and then started again (even on the same machine), thenat i ve time
unit of the new runtime system instance can differ fromthenat i ve time unit of the old runtime system instance.

One can get an approximation of the nat i ve time unit by calling erl ang: convert tinme_unit (1,
second, nati ve). Theresult equalsthe number of whole nat i ve time units per second. If the number of
nat i ve time units per second does not add up to awhole number, the result is rounded downwards.

Note:

The value of thenat i ve time unit gives you more or less no information about the quality of time values.
It sets a limit for the resolution and for the precision of time values, but it gives no information about
the accuracy of time values. The resolution of the nat i ve time unit and the resolution of time values can
differ significantly.

perf _counter
Symbolic representation of the performance counter time unit used by the Erlang runtime system.

The perf _count er time unit behaves much in the same way asthe nat i ve time unit. That is, it can differ
between runtime restarts. To get values of thistype, call os: perf_counter/O0.

deprecated _tinme_unit()
Deprecated symbolic representations kept for backwards-compatibility.

The time_unit/0 type can be extended. To convert time values between time units, use
erl ang: convert_time_unit/3.

deprecated time unit() =
seconds | milli seconds | micro seconds | nano_seconds

Theti me_unit () typealso consist of the following deprecated symbolic time units:

seconds
Same assecond.
nmlli_seconds

Sameasni | | i second.
m cro_seconds

Sameasni crosecond.
nano_seconds

Same asnanosecond.

Exports
abs(Float) -> float()

abs(Int) -> integer() >= 0
Types.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 97

erlang

Int = integer()
Types:
Fl oat = float()
Int = integer()
Returns an integer or float that is the arithmetical absolute value of Fl oat or | nt, for example:

> abs(-3.33).
3.33

> abs(-3).

3

Allowed in guard tests.

erlang:adler32(Data) -> integer() >= 0
Types.

Data = iodata()
Computes and returns the adler32 checksum for Dat a.

erlang:adler32(0ldAdler, Data) -> integer() >= 0
Types.

OldAdler = integer() >= 0

Data = iodata()

Continues computing the adler32 checksum by combining the previous checksum, A dAdl er , with the checksum
of Dat a.

The following code:

erlang:adler32(Datal),
erlang:adler32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:adler32([Datal,Data2]).

erlang:adler32 combine(FirstAdler, SecondAdler, SecondSize) ->
integer() >= 0
Types:
FirstAdler = SecondAdler = SecondSize = integer() >= 0

Combines two previously computed adler32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

Y = erlang:adler32(Datal),

98 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Z = erlang:adler32(Y,Data2).

assigns the same valueto Z asthis:

erlang:adler32(Datal),
erlang:adler32(Data2),
erlang:adler32 combine(X,Y,iolist size(Data2)).

N < X
I nnu

erlang:append element(Tuplel, Term) -> Tuple2
Types:
Tuplel = Tuple2 = tuple()
Term = term()
Returnsanew tuplethat has one element morethan Tupl e1, and containstheelementsin Tupl el followed by Ter m

asthe last element. Semantically equivalenttol i st _to_tupl e(tuple_to _|ist(Tuplel) ++ [Terni),
but much faster. Example:

> erlang:append element({one, two}, three).
{one, two, three}

apply(Fun, Args) -> term()
Types:
Fun = function()
Args = [term()]
Cadllsafun, passing the elementsin Ar gs asarguments.

If the number of elements in the arguments are known at compile time, the call is better written as Fun(Ar g1,
Arg2, ... ArgN).

Warning:

Earlier, Fun could also be specified as { Mbdul e, Functi on}, equivalent to appl y(Modul e,
Functi on, Args).Thisuseisdeprecated and will stop workingin afuturerelease.

apply(Module, Function, Args) -> term()
Types:

Module = module()

Function = atom()

Args = [term()]

Returnstheresult of applying Funct i on inModul e to Ar gs. Theapplied function must be exported from Modul e.
The arity of the function is the length of Ar gs. Example:

> apply(lists, reverse, [[a, b, c]]).
[c,b,a]

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 99

erlang

> apply(erlang, atom to list, ['Erlang'l]).
"Erlang"

If the number of arguments are known at compile time, the call is better written as Modul e: Functi on(Ar g1,
Arg2, ..., ArgN).

Failure: error _handl er: undefi ned_functi on/ 3iscalledif the applied function is not exported. The error
handler can be redefined (see pr ocess_fl ag/ 2). If error _handl er isundefined, or if the user has redefined
the default er r or _handl er so the replacement module is undefined, an error with reason undef is generated.

atom to binary(Atom, Encoding) -> binary()
Types:
Atom = atom()
Encoding = latinl | unicode | utf8
Returns abinary corresponding to the text representation of At om If Encodi ng isl at i n1, onebyte existsfor each

character in the text representation. If Encodi ng isut f 8 or uni code, the characters are encoded using UTF-8
(that is, characters from 128 through 255 are encoded in two bytes).

Note:

atomto_binary(Atom |atinl) never fals, as the text representation of an atom can only contain
characters from 0 through 255. In afuture release, the text representation of atoms can be allowed to contain any
Unicode character and at om t o_bi nary(At om | ati nl) then failsif the text representation for At om
contains a Unicode character > 255.

Example:

> atom to binary('Erlang', latinl).
<<"Erlang">>

atom to list(Atom) -> string()
Types:
Atom = atom()
Returns a string corresponding to the text representation of At om for example:

> atom to list('Erlang').
"Erlang"

binary part(Subject, PosLen) -> binary()
Types:
Subject = binary()
PosLen = {Start :: integer() >= 0, Length :: integer()}
Extracts the part of the binary described by PosLen.
Negative length can be used to extract bytes at the end of a binary, for example:

100 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary part(Bin, {byte size(Bin), -5}).
<<6,7,8,9,10>>

Failure: badar g if PosLen in any way references outside the binary.

St art iszero-based, that is:

1> Bin = <<1,2,3>>
2> binary part(Bin, {0,2}).
<<1,2>>

For details about the PosLen semantics, seebi nary(3) .
Allowed in guard tests.

binary part(Subject, Start, Length) -> binary()
Types.

Subject = binary()

Start = integer() >= 0

Length = integer()
Thesameasbi nary_part (Subject, {Start, Length}).
Allowed in guard tests.

binary to atom(Binary, Encoding) -> atom()
Types.

Binary = binary()

Encoding = latinl | unicode | utf8

Returns the atom whose text representation is Bi nary. If Encodi ng is| ati nl, no trandation of bytes in the
binary isdone. If Encodi ng isut f 8 or uni code, the binary must contain valid UTF-8 sequences. Only Unicode

characters up to 255 are allowed.

Note:

bi nary_to_at on(Bi nary, utf8) failsif thebinary contains Unicode characters> 255. Inafuturerelease,

such Unicode characters can be alowed and bi nary_t o_at om(Bi nary,

ut f 8) does then not fail. For

more information about Unicode support in atoms, see the note on UTF-8 encoded atoms in section "External

Term Format" in the User's Guide.

Examples:

> binary to atom(<<"Erlang">>, latinl).
'Erlang'’
> binary to atom(<<1024/utf8>>, utf8).
** exception error: bad argument

in function binary to atom/2

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 101

erlang

called as binary to atom(<<208,128>>,utf8)

binary to existing atom(Binary, Encoding) -> atom()
Types:

Binary = binary()

Encoding = latinl | unicode | utf8
Asbinary_t o_at om 2, but the atom must exist.

Failure: badar g if the atom does not exist.

binary to float(Binary) -> float()
Types:
Binary = binary()
Returns the float whose text representation is Bi nar y, for example:

> binary to float(<<"2.2017764e+0">>).
2.2017764

Failure: badar g if Bi nary contains a bad representation of afloat.
binary to_integer(Binary) -> integer()
Types:

Binary = binary()
Returns an integer whose text representation is Bi nar y, for example:

> binary to integer(<<"123">>).
123

Failure: badar g if Bi nary contains abad representation of an integer.

binary to integer(Binary, Base) -> integer()

Types:
Binary = binary()
Base = 2..36

Returns an integer whose text representation in base Base isBi nar y, for example:

> binary to integer(<<"3FF">>, 16).
1023

Failure: badar g if Bi nary contains abad representation of an integer.

binary to list(Binary) -> [byte()]
Types:

102 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Binary = binary()
Returns alist of integers corresponding to the bytes of Bi nary.

binary to list(Binary, Start, Stop) -> [byte()]
Types:

Binary = binary()

Start = Stop = integer() >=1

1..byte size(Bi nary)

Asbinary to |ist/1,butreturnsalist of integers corresponding to the bytes from position St ar t to position
St op in Bi nar y. The positions in the binary are numbered starting from 1.

Note:

The one-based indexing for binaries used by this function is deprecated. New code is to use
bi nary: bin_to_list/3inSTDLIB instead. All functionsin module bi nar y consistently use zero-based
indexing.

binary to term(Binary) -> term()
Types:
Binary = ext_binary()
Returns an Erlang term that is the result of decoding binary object Bi nar y, which must be encoded according to the
Erlang external term format.

> Bin = term to binary(hello).
<<131,100,0,5,104,101,168,168,111>>
> hello = binary to term(Bin).
hello

Warning:

When decoding binaries from untrusted sources, consider using bi nary _to_term 2 to prevent Denia of
Service attacks.

Seealsotermto_binary/land binary to term 2.

binary to term(Binary, Opts) -> term()
Types:
Binary = ext _binary()
Opts = [safe]
Asbi nary_t o_terni 1, but takes options that affect decoding of the binary.
Option:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 103

erlang

safe
Use this option when receiving binaries from an untrusted source.

When enabled, it prevents decoding data that can be used to attack the Erlang system. In the event of receiving
unsafe data, decoding fails with abadar g error.

This prevents creation of new atoms directly, creation of new atoms indirectly (as they are embedded in certain
structures, such as process identifiers, refs, and funs), and creation of new external function references. None of
those resources are garbage collected, so unchecked creation of them can exhaust available memory.

Failure: badar g if saf e is specified and unsafe data is decoded.

> binary to_ term(<<131,100,0,5,104,101,108,108,111>>, [safe]).
** exception error: bad argument

> hello.

hello

> binary to_ term(<<131,100,0,5,104,101,108,108,111>>, [safe]).
hello

Seealsotermto_binary/1, binary to term 1l,and |ist_to_existing_atoni 1.

bit size(Bitstring) -> integer() >= 0
Types.
Bitstring = bitstring()

Returns an integer that isthe sizein bitsof Bi t st ri ng, for example:

> bit size(<<433:16,3:3>>).
19

> bit size(<<1,2,3>>).

24

Allowed in guard tests.

bitstring to list(Bitstring) -> [byte() | bitstring()]
Types:
Bitstring = bitstring()

Returnsalist of integers corresponding to the bytesof Bi t st ri ng. If the number of bitsin the binary isnot divisible
by 8, the last element of the list is a bitstring containing the remaining 1-7 bits.

erlang:bump reductions(Reductions) -> true
Types:
Reductions = integer() >=1
This implementation-dependent function increments the reduction counter for the calling process. In the Beam
emulator, the reduction counter is normally incremented by one for each function and BIF call. A context switch is

forced when the counter reaches the maximum number of reductions for a process (2000 reductions in Erlang/OTP
R12B).

104 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Warning:

This BIF can be removed in a future version of the Beam machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.

byte size(Bitstring) -> integer() >= 0
Types:
Bitstring = bitstring()

Returns an integer that is the number of bytes needed to contain Bi t st ri ng. That is, if the number of bits in
Bi t stri ngisnot divisible by 8, the resulting number of bytesis rounded up. Examples:

> byte size(<<433:16,3:3>>).
3

> byte size(<<1,2,3>>).

3

Allowed in guard tests.

erlang:cancel timer(TimerRef) -> Result
Types:

TimerRef = reference()

Time = integer() >= 0

Result = Time | false

Cancelsatimer. Thesameascalling erl ang: cancel _timer(TinerRef, []).

erlang:cancel timer(TimerRef, Options) -> Result | ok
Types:

TimerRef = reference()

Async = Info = boolean()

Option = {async, Async} | {info, Info}

Options = [Option]

Time = integer() >= 0

Result = Time | false

Cancels a timer that has been created by erl ang:start_tiner or erl ang: send_after. Ti mer Ref
identifies the timer, and was returned by the BIF that created the timer.

Options:
{async, Async}

Asynchronousregquest for cancellation. Async defaultstof al se, which causesthe cancellation to be performed
synchronously. When Async is set to t rue, the cancel operation is performed asynchronously. That is,
cancel _tinmer () sendsan asynchronous request for cancellation to the timer service that manages the timer,
and then returns ok.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 105

erlang

{info, Info}
Requestsinformation about the Resul t of the cancellation. | nf o defaultstot r ue, which meansthe Resul t
isgiven. When | nf o issettof al se, noinformation about the result of the cancellation is given.

e When Async isfal se:if Infoistrue, the Result isreturned by erl ang: cancel _timer ().
otherwise ok isreturned.

e When Async istrue: if I nfo istrue, a message on the form {cancel _tiner, Ti nerRef,
Resul t} issenttothecaller of erl ang: cancel _ti mer () when the cancellation operation has been
performed, otherwise no message is sent.

More Opt i onsmay be added in the future.
If Resul t isaninteger, it represents the time in milliseconds left until the canceled timer would have expired.

If Resul t isf al se, atimer corresponding to Ti mer Ref could not be found. This can be either because the timer
had expired, already had been canceled, or because Ti mer Ref never corresponded to atimer. Even if the timer had
expired, it does not tell you if the time-out message has arrived at its destination yet.

Note:

The timer service that manages the timer can be co-located with another scheduler than the scheduler that the
calling process is executing on. If so, communication with the timer service takes much longer time than if it is
located locally. If the calling processisin critical path, and can do other things while waiting for the result of this
operation, or is not interested in the result of the operation, you want to use option { async, true}.If using
option{ async, fal se}, the calling process blocks until the operation has been performed.

Seeadsoerl ang: send_after/ 4, erlang: start _timer/4,and erl ang: read_ti mer/ 2.

check old code(Module) -> boolean()
Types:

Module = module()
Returnst r ue if Modul e hasold code, otherwisef al se.

Seedso code(3).

check process code(Pid, Module) -> CheckResult
Types:

Pid = pid()

Module = module()

CheckResult = boolean()

Thesameas check _process_code(Pid, Mdule, []) .

check process code(Pid, Module, OptionList) -> CheckResult | async
Types:

106 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Pid = pid()
Module = module()
RequestId = term()
Option = {async, RequestId} | {allow gc, boolean()}
OptionList = [Option]
CheckResult = boolean() | aborted
Checksif the node local process identified by Pi d executes old code for Mbdul e.
Opt i ons:
{all ow_gc, bool ean()}

Determines if garbage collection is allowed when performing the operation. If {al | ow _gc, fal se} is
passed, and a garbage collection is needed to determine the result of the operation, the operation is aborted
(see information on CheckResul t below). The default is to allow garbage collection, that is, { al | ow_gc,
true}.

{async, Request | d}

Thefunctioncheck _process_code/ 3 returnsthevalueasync immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{check_process_code, Requestld, CheckResult}.

If Pi d equalssel f () ,andnoasync option hasbeen passed, the operation is performed at once. Otherwise arequest
for the operation is sent to the process identified by Pi d, and is handled when appropriate. If no async option has
been passed, the caller blocks until CheckResul t isavailable and can be returned.

CheckResul t informs about the result of the request as follows:
true

The process identified by Pi d executes old code for Modul e. That is, the current call of the process executes
old code for this module, or the process has references to old code for this module, or the process contains funs
that references old code for this module.

fal se
The process identified by Pi d does not execute old code for Modul e.
abort ed

The operation was aborted, as the process needed to be garbage collected to determine the operation result, and
the operation was requested by passing option{ al | ow_gc, fal se}.

Note:

Up until ERTS version 8.*, the check process code operation checks for al types of references to the old code.
That is, direct references (e.g. return addresses on the process stack), indirect references (f unsin process context),
and references to literals in the code.

Asof ERTS version 9.0, the check process code operation only checks for direct references to the code. Indirect
references viaf unswill be ignored. If such f uns exist and are used after a purge of the old code, an exception
will be raised upon usage (same as the case when the f un is received by the process after the purge). Literals
will be taken care of (copied) at alater stage. This behavior can as of ERTS version 8.1 be enabled when building
OTP, and will automatically be enabled if dirty scheduler support is enabled.

Seeaso code(3).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 107

erlang

Failures:

badar g

If Pi d isnot anodelocal processidentifier.
badar g

If Modul e isnot an atom.
badar g

If Opti onLi st isaninvalid list of options.

erlang:convert time unit(Time, FromUnit, ToUnit) -> ConvertedTime
Types:

Time = ConvertedTime = integer()

FromUnit = ToUnit = time_unit()

ConvertstheTi me valueof timeunit Fr omni t tothecorresponding Conver t edTi nme valueof timeunit ToUni t .
Theresult is rounded using the floor function.

Warning:

Y ou can lose accuracy and precision when converting between time units. To minimize such loss, collect all data
at nat i ve time unit and do the conversion on the end result.

erlang:crc32(Data) -> integer() >= 0
Types:
Data = iodata()
Computes and returns the crc32 (IEEE 802.3 style) checksum for Dat a.

erlang:crc32(0ldCrc, Data) -> integer() >= 0
Types:
0ldCrc = integer() >= 0
Data = iodata()
Continues computing the crc32 checksum by combining the previous checksum, A dCr ¢, with the checksum of
Dat a.

The following code:

erlang:crc32(Datal),
erlang:crc32(X,Data2).

assigns the same valueto Y asthis:

Y = erlang:crc32([Datal,Data2]).

erlang:crc32 combine(FirstCrc, SecondCrc, SecondSize) ->

108 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

integer() >= 0
Types.
FirstCrc = SecondCrc = SecondSize = integer() >= 0
Combines two previously computed crc32 checksums. This computation requires the size of the data object for the
second checksum to be known.

The following code:

erlang:crc32(Datal),
erlang:crc32(Y,Data2).

assigns the same value to Z asthis:

erlang:crc32(Datal),
erlang:crc32(Data2),
erlang:crc32 combine(X,Y,iolist size(Data2)).

N < X
o

date() -> Date
Types:
Date = cal endar: date()
Returnsthe current date as{ Year, Month, Day}.

The time zone and Daylight Saving Time correction depend on the underlying OS. Example:

> date().
{1995,2,19}

erlang:decode packet(Type, Bin, Options) ->
{ok, Packet, Rest} |
{more, Length} |
{error, Reason}
Types:
Type =

asnl |
cdr |
sunrm |
fcgi |
tpkt |
line |
http |
http bin |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 109

erlang

httph |
httph bin
Bin = binary()
Options = [Opt]
Opt =
{packet size, integer() >= 0} |
{line length, integer() >= 0}
Packet = binary() | HttpPacket
Rest = binary()
Length = integer() >= 0 | undefined
Reason = term()

HttpPacket =
HttpRequest | HttpResponse | HttpHeader | http eoh | HttpError

HttpRequest = {http request, HttpMethod, HttpUri, HttpVersion}

HttpResponse =
{http response, HttpVersion, integer(), HttpString}

HttpHeader =
{http_header,
integer(),
HttpField,
Reserved :: term(),
Value :: HttpString}

HttpError = {http error, HttpString}

HttpMethod =
'"OPTIONS' |
'"GET' |
'"HEAD' |
"POST"' |
"PUT' |
'DELETE"' |
'"TRACE"' |
HttpString
HttpUri =
11
{absoluteURI,
http | https,
Host :: HttpString,
Port :: inet:port_nunber() | undefined,
Path :: HttpString} |
{scheme, Scheme :: HttpString, HttpString} |
{abs path, HttpString} |
HttpString
HttpVersion =
{Major :: integer() >= 0, Minor :: integer() >= 0}
HttpField =
‘Cache-Control' |
‘Connection’' |
‘Date’ |
'Pragma’ |

110 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

‘Transfer-Encoding' |
'Upgrade’ |

'Via' |

"Accept’' |
"Accept-Charset’' |
"Accept-Encoding' |
'Accept-Language’' |
'Authorization' |
"From' |

'Host' |
'If-Modified-Since' |
'If-Match' |
'If-None-Match' |
'If-Range’ |
'If-Unmodified-Since' |
'Max-Forwards' |
'Proxy-Authorization' |
'Range’ |

'Referer' |
'User-Agent’' |

‘Age' |

‘Location’' |
'Proxy-Authenticate’ |
'"Public' |
'Retry-After’
'Server' |

‘Vary' |

'Warning' |
'"Www-Authenticate' |
"Allow’ |
‘Content-Base' |
‘Content-Encoding' |
'Content-Language’' |
‘Content-Length' |
‘Content-Location' |
‘Content-Md5"' |
‘Content-Range' |
'Content-Type' |
'Etag' |

'Expires’' |
'Last-Modified' |
'Accept-Ranges’' |
'Set-Cookie' |
'Set-Cookie2' |
'X-Forwarded-For'
'Cookie' |
'Keep-Alive' |
'Proxy-Connection' |

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 111

erlang

HttpString
HttpString = string() | binary()

Decodes the binary Bi n according to the packet protocol specified by Type. Similar to the packet handling done by
sockets with option { packet , Type}.

If an entire packet is contained in Bin, it is returned together with the remainder of the binary as
{ ok, Packet , Rest }.

If Bi n does not contain the entire packet, { mor e, Lengt h} isreturned. Lengt h is either the expected total size
of the packet, or undef i ned if the expected packet size is unknown. decode_packet can then be caled again
with more data added.

If the packet does not conform to the protocol format, { er r or , Reason} isreturned.

Types:

raw | O
No packet handling is done. The entire binary is returned unlessit is empty.

1] 2] 4
Packets consist of a header specifying the number of bytes in the packet, followed by that number of bytes. The
length of the header can be one, two, or four bytes; the order of the bytes is big-endian. The header is stripped
off when the packet is returned.

line
A packet is aline-terminated by a delimiter byte, default is the latin-1 newline character. The delimiter byte is
included in the returned packet unless the line was truncated according to option | i ne_| engt h.

asnl | cdr | sunrm| fcgi | tpkt
The header is not stripped off.
The meanings of the packet types are as follows:

asnl - ASN.1BER
sunr m- Sun's RPC encoding
cdr - CORBA (GIOP 1.1)
fcgi - Fast CGI
t pkt - TPKT format [RFC1006]
http | httph | http_bin | httph_bin

The Hypertext Transfer Protocol. The packets are returned with the format according to Ht t pPacket described
earlier. A packet is either arequest, a response, a header, or an end of header mark. Invalid lines are returned
asHtt pError.

Recognized request methods and header fields are returned as atoms. Others are returned as strings. Strings of
unrecognized header fields are formatted with only capital letters first and after hyphen characters, for example,
" Sec- Websocket - Key" .

The protocol type ht t p is only to be used for the first line when an Ht t pRequest or an Ht t pResponse
is expected. The following calls are to use ht t ph to get Ht t pHeader suntil ht t p_eoh is returned, which
marks the end of the headers and the beginning of any following message body.

Thevariantsht t p_bi nand ht t ph_bi n return strings (Ht t pSt r i ng) as binariesinstead of lists.
Options:

112 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{packet _si ze, integer() >= 0}

Sets the maximum allowed size of the packet body. If the packet header indicates that the length of the packet is
longer than the maximum allowed length, the packet is considered invalid. Defaults to O, which means no size
limit.

{l'ine_length, integer() >= 0}
For packet typel i ne, lineslonger than the indicated length are truncated.

Option | i ne_l| ength aso applies to htt p* packet types as an alias for option packet si ze if
packet _si ze itself isnot set. Thisuseis only intended for backward compatibility.

{l'ine delimter, 0 =< byte() =< 255}
For packet typel i ne, setsthe delimiting byte. Default isthe latin-1 character $\ n.

Examples:

> erlang:decode packet(1l,<<3,"abcd">>,[]).
{ok,<<"abc">>,<<"d">>}

> erlang:decode packet(1l,<<5,"abcd">>,[]).
{more, 6}

erlang:delete element(Index, Tuplel) -> Tuple2
Types:

Index = integer() >=1

1..tuple size(Tuplel)

Tuplel = Tuple2 = tuple()

Returns a new tuple with element at | ndex removed from tuple Tupl el, for example:

> erlang:delete element(2, {one, two, three}).
{one, three}

delete module(Module) -> true | undefined
Types:
Module = module()

Makes the current code for Modul e become old code and deletes all references for this module from the export table.
Returnsundef i ned if the module does not exist, otherwiset r ue.

Warning:
This BIF isintended for the code server (see code(3)) and is not to be used elsewhere.

Failure: badar g if there already is an old version of Mbdul e.

demonitor(MonitorRef) -> true
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 113

erlang

MonitorRef = reference()

If Moni t or Ref is areference that the calling process obtained by calling moni t or / 2, this monitoring is turned
off. If the monitoring is already turned off, nothing happens.

Oncedenoni t or (Moni t or Ref) hasreturned, itisguaranteedthatno{' DOAN , MnitorRef, _, _, _}
message, because of the monitor, will be placed in the caller message queue in the future. However, a{' DOV ,
MonitorRef, _, _, _} messagecan havebeen placed in the caller message queue beforethe call. It istherefore

usually advisable to remove such a' DOAN message from the message queue after monitoring has been stopped.
denoni t or (Moni torRef, [flush]) can be used instead of denoni t or (Moni t or Ref) if this cleanup
iswanted.

Note:

Before Erlang/OTP R11B (ERTS5.5) denoni t or / 1 behaved completely asynchronously, that is, the monitor
was active until the "demonitor signal” reached the monitored entity. This had one undesirable effect. Y ou could
never know when you were guaranteed not to receive a DOAN message because of the monitor.

The current behavior can be viewed as two combined operations: asynchronously send a "demonitor signal” to
the monitored entity and ignore any future results of the monitor.

Failure: Itisan error if Moni t or Ref refersto amonitoring started by another process. Not all such cases are cheap
to check. If checking is cheap, the call failswith badar g, for exampleif Moni t or Ref isaremote reference.

demonitor(MonitorRef, OptionList) -> boolean()

Types:
MonitorRef = reference()
OptionList = [Option]

Option = flush | info
Thereturned valueist r ue unlessi nf o ispart of Opt i onLi st .
denoni t or (Moni tor Ref, []) isequivaentto denonit or (Monitor Ref).
Options:
flush

Removes(one){ , MonitorRef, _, ., _} message, if thereisone, from the caller message queue after
monitoring has been stopped.

Calling denoni t or (Moni t or Ref, [fl ush]) isequivaent to the following, but more efficient:

demonitor(MonitorRef),
receive
{ , MonitorRef, , , } ->
true
after 0 ->
true
end

info
The returned value is one of the following:

114 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

true

The monitor was found and removed. In this case, no' DOAN' message corresponding to this monitor has
been delivered and will not be delivered.

fal se

The monitor was not found and could not be removed. This probably because someone aready has placed
a' DOAN' message corresponding to this monitor in the caller message queue.

If option i nf o iscombined with option f | ush, f al se isreturned if aflush was needed, otherwiset r ue.

Note:

More options can be added in a future release.

Failures:

badar g

If Opti onLi st isnotalist.
badar g

If Opti onisaninvalid option.
badar g

The same failure asfor denoni t or / 1.

disconnect node(Node) -> boolean() | ignored
Types:
Node = node()

Forces the disconnection of anode. This appearsto the node Node asif thelocal node has crashed. ThisBIFismainly
used in the Erlang network authentication protocols.

Returnst r ue if disconnection succeeds, otherwisef al se. If theloca nodeisnot alive, i gnor ed is returned.

erlang:display(Term) -> true
Types:
Term = term()
Prints a text representation of Ter mon the standard output.

Warning:
This BIF isintended for debugging only.

element (N, Tuple) -> term()
Types:
N = integer() >=1
1..tuple size(Tuple)
Tuple = tuple()
Returns the Nth element (numbering from 1) of Tupl e, for example:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 115

erlang

> element(2, {a, b, c}).
b

Allowed in guard tests.

erase() -> [{Key, Val}l
Types.
Key = Val = term()

Returns the process dictionary and deletesiit, for example:

> put(keyl, {1, 2, 3}),
put(key2, [a, b, cl),

erase().
[{keyl,{1,2,3}},{key2,[a,b,c]}]

erase(Key) -> Val | undefined
Types:
Key = Val = term()

Returns the value Val associated with Key and deletes it from the process dictionary. Returns undef i ned if no
value is associated with Key . Example:

> put(keyl, {merry, lambs, are, playing}),
X = erase(keyl),

{X, erase(keyl)}.

{{merry, lambs,are,playing},undefined}

error(Reason) -> no return()
Types:
Reason = term()
Stops the execution of the calling process with the reason Reason, where Reason is any term. The exit reason is

{Reason, Wher e}, where Wher e isalist of the functions most recently called (the current function first). As
evaluating this function causes the process to terminate, it has no return value. Example:

> catch error(foobar).

{'EXIT',{foobar, [{erl eval,do apply,5},
{erl eval,expr,5},
{shell,exprs,6},
{shell,eval exprs,6},
{shell,eval loop,3}1}}

error(Reason, Args) -> no_return()
Types:

116 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Reason = term()

Args = [term()]
Stops the execution of the calling process with the reason Reason, where Reason is any term. The exit reason is
{Reason, Wher e}, whereWer e isalist of the functions most recently called (the current function first). Ar gs

is expected to be the list of arguments for the current function; in Beam it is used to provide the arguments for the
current functionin theterm Wher e. Asevaluating this function causes the processto terminate, it has no return value.

exit(Reason) -> no return()
Types:
Reason = term()

Stops the execution of the calling process with exit reason Reason, where Reason is any term. As evaluating this
function causes the process to terminate, it has no return value. Example;

> exit(foobar).

** exception exit: foobar
> catch exit(foobar).
{'EXIT', foobar}

exit(Pid, Reason) -> true
Types:
Pid = pid() | port()
Reason = term()
Sends an exit signal with exit reason Reason to the process or port identified by Pi d.
The following behavior appliesif Reason isany term, except nor mal orkil | :

« If Pi d isnot trapping exits, Pi d itself exits with exit reason Reason.

* If Pi d istrapping exits, the exit signal is transformed into amessage {' EXIT', From Reason} and
delivered to the message queue of Pi d.

e Fromisthe processidentifier of the process that sent the exit signal. Seealso process_fl ag/ 2.

If Reason istheatom nor mal , Pi d doesnot exit. If it istrapping exits, the exit signal istransformed into a message
{"EXIT", From nornmal} anddelivered to its message queue.

If Reason istheatom ki | | , thatis, if exi t (Pid, Kkill) iscaled, an untrappable exit signal is sent to Pi d,
which unconditionally exits with exit reason ki | | ed.

erlang:external_size(Term) -> integer() >= 0
Types:
Term = term()

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies always:

> Sizel = byte size(term to binary()),
> Size2 erlang:external size(),

> true = Sizel =< Size2.

true

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 117

erlang

Thisisequivalent to acall to:

erlang:external size(, [1)

erlang:external_size(Term, Options) -> integer() >= 0

Types:
Term = term()
Options = [{minor version, Version :: integer() >= 0}]

Calculates, without doing the encoding, the maximum byte size for aterm encoded in the Erlang external term format.
The following condition applies always:

> Sizel = byte size(term to binary(,)),
> Size2 = erlang:external size(,),

> true = Sizel =< Size2.

true

Option {m nor _versi on, Version} specifies how floats are encoded. For a detailed description, see
termto_binary/ 2.

float(Number) -> float()
Types:
Number = number()
Returns afloat by converting Nunber to afloat, for example:

> float(55).
55.0

Allowed in guard tests.

Note:

If used on the top level in a guard, it tests whether the argument is a floating point number; for clarity, use
i s_float/1instead.

When f | oat / 1 isused in an expression in aguard, such as'f | oat (A) == 4. 0/, it converts a number as
described earlier.

float to binary(Float) -> binary()
Types:
Float = float()
Thesameasfl oat _to_binary(Float,[{scientific, 20}]).

118 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

float to binary(Float, Options) -> binary()
Types:

Float = float()

Options = [Option]

Option =
{decimals, Decimals :: 0..253} |
{scientific, Decimals :: 0..249} |
compact

Returns a binary corresponding to the text representation of FI oat using fixed decimal point formatting. Opt i ons
behavesinthesameway as fl oat _to_|i st/ 2. Examples.

> float to binary(7.12, [{decimals, 4}]).
<<"7.1200">>

> float to binary(7.12, [{decimals, 4}, compact]).
<<"7.12">>

float to list(Float) -> string()
Types:
Float = float()
Thesameasfl oat _to_list(Float,[{scientific,20}]).

float to list(Float, Options) -> string()
Types.

Float = float()

Options = [Option]

Option =
{decimals, Decimals :: 0..253} |
{scientific, Decimals :: 0..249} |
compact

Returns a string corresponding to the text representation of Fl oat using fixed decimal point formatting.

Available options:

e |If option deci mal s is specified, the returned value contains at most Deci mal s number of digits past the
decimal point. If the number does not fit in the internal static buffer of 256 bytes, the function throws badar g.

« Ifoptionconpact isspecified, thetrailing zerosat the end of thelist aretruncated. Thisoptionisonly meaningful
together with option deci mal s.

» If option sci enti fi c is specified, the float is formatted using scientific notation with Deci mal s digits of
precision.
e |IfOptionsis[],thefunctionbehavesas fl oat to |ist/1.

Examples:

> float to list(7.12, [{decimals, 4}]).

"7.1200"

> float to list(7.12, [{decimals, 4}, compact]).
II7. 12"

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 119

erlang

erlang:fun _info(Fun) -> [{Item, Info}]
Types.
Fun = function()

Item =
arity |
env |
index |
name |
module |
new index |
new uniq |
pid |
type |
unigq

Info = term()

Returns alist with information about the fun Fun. Each list element is atuple. The order of the tuplesis undefined,
and more tuples can be added in afuture release.

Warning:

ThisBIF ismainly intended for debugging, but it can sometimes be useful in library functionsthat need to verify,
for example, the arity of afun.

Two types of funs have sightly different semantics:

e Afuncreated by fun M F/ Aiscalled an external fun. Calling it will always call the function F with arity A
in the latest code for module M Notice that module Mdoes not even need to be loaded when thefunf un M F/
Aliscreated.

e All other funs are called local. When alocal fun is called, the same version of the code that created the fun is
caled (even if anewer version of the module has been loaded).

The following elements are always present in the list for both local and external funs:
{type, Type}
Typeisl ocal orexternal.
{odul e, Modul e}
Modul e (an atom) isthe module name.
If Fun isalocal fun, Modul e isthe module in which the fun is defined.
If Fun isan external fun, Modul e isthe module that the fun refers to.
{nane, Nane}
Nane (an atom) is a function name.

If Fun isaloca fun, Nane isthe name of the local function that implements the fun. (This name was generated
by the compiler, and is only of informational use. Asitisalocal function, it cannot be called directly.) If no code
iscurrently loaded for the fun, [] isreturned instead of an atom.

If Fun isan externa fun, Name is the name of the exported function that the fun refersto.

120 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{arity, Arity}
Ari ty isthe number of arguments that the fun isto be called with.
{env, Env}
Env (alist) isthe environment or free variables for the fun. For external funs, the returned list is always empty.
The following elements are only present in the list if Fun islocal:
{pid, Pid}
Pi d isthe processidentifier of the process that originally created the fun.
{i ndex, Index}
I ndex (aninteger) is an index into the module fun table.
{new_i ndex, | ndex}
I ndex (aninteger) is an index into the module fun table.
{new_uni g, Uni g}
Uni q (abinary) isaunique value for thisfun. It is calculated from the compiled code for the entire module.
{uni g, Uniq}

Uni g (an integer) is a unique value for this fun. As from Erlang/OTP R15, this integer is calculated from the
compiled code for the entire module. Before Erlang/OTP R15, thisinteger was based on only the body of the fun.

erlang:fun info(Fun, Item) -> {Item, Info}
Types:
Fun = function()
Item = fun_info_item()
Info = term()
fun info item() =
arity |
env |
index |
name |
module |
new index |
new uniq |
pid |
type |
uniq
Returnsinformation about Fun as specified by | t emyintheform{ It em I nf o} .
For any fun, | t emcan be any of the atomsnodul e, nane,arity,env,ortype.

For aloca fun, I t emcan aso be any of the atoms i ndex, new_i ndex, new_uni g, uni g, and pi d. For an
externa fun, the value of any of theseitemsis always the atom undef i ned.

Seeerl ang: fun_info/ 1.

erlang:fun to list(Fun) -> string()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 121

erlang

Fun = function()

Returns a string corresponding to the text representation of Fun.

erlang: function exported(Module, Function, Arity) -> boolean()
Types:

Module = module()

Function = atom()

Arity = arity()

Returnst r ue if the module Mbdul e isloaded and contains an exported function Funct i on/ Ari ty, or if thereis
aBIF (abuilt-in function implemented in C) with the specified name, otherwise returnsf al se.

Note:
This function used to return f al se for BIFs before Erlang/OTP 18.0.

garbage collect() -> true

Forces an immediate garbage collection of the executing process. The function is not to be used unless it has been
noticed (or there are good reasons to suspect) that the spontaneous garbage collection will occur too late or not at all.

Warning:

Improper use can seriously degrade system performance.

garbage collect(Pid) -> GCResult
Types.

Pid = pid()

GCResult = boolean()
Thesameas gar bage_col lect (Pid, []).

garbage collect(Pid, OptionList) -> GCResult | async
Types:

Pid = pid()

RequestId = term()

Option = {async, RequestId}

OptionList = [Option]

GCResult = boolean()
Garbage collects the node local process identified by Pi d.

Opt i on:

122 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{async, Request|d}
Thefunction gar bage_col | ect/ 2 returns the value async immediately after the request has been sent.
When the request has been processed, the process that called this function is passed a message on the form
{garbage_coll ect, Requestld, GCResult}.

If Pi d equalssel f (), andnoasync option has been passed, the garbage collection is performed at once, that is, the
sameascaling gar bage_col | ect/ 0. Otherwise arequest for garbage collection is sent to the process identified
by Pi d, and will be handled when appropriate. If noasync option has been passed, the caller blocksuntil GCResul t
is available and can be returned.

CCResul t informs about the result of the garbage collection request as follows:

true
The process identified by Pi d has been garbage collected.
fal se
No garbage collection was performed, as the process identified by Pi d terminated before the request could be

satisfied.
Notice that the same caveats apply asfor gar bage_col | ect/ 0.
Failures:

badar g

If Pi d isnot anodelocal processidentifier.
badar g

If Opti onLi st isaninvalidlist of options.

get() -> [{Key, Val}]
Types:
Key = Val = term()

Returns the process dictionary asalist of { Key, Val } tuples, for example:

> put(keyl, merry),

put (key2, lambs),

put (key3, {are, playing}),

get().
[{keyl,merry}, {key2, lambs}, {key3, {are,playing}}]

get(Key) -> Val | undefined
Types:
Key = Val = term()

Returnsthevalue Val associated with Key inthe processdictionary, or undef i ned if Key doesnot exist. Example:

> put(keyl, merry),

put (key2, lambs),

put({any, [valid, term]}, {are, playing}),
get({any, [valid, term]}).

{are,playing}

erlang:get cookie() -> Cookie | nocookie
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 123

erlang

Cookie = atom()

Returns the magic cookie of the local nodeif the node is alive, otherwise the atom nocooki e.

get keys() -> [Key]
Types:
Key = term()
Returnsalist of all keys present in the process dictionary, for example:

> put(dog, {animal,1l}),
put(cow, {animal,2}),
put(lamb, {animal,3}),
get keys().
[dog, cow, lamb]

get keys(Val) -> [Key]
Types:
Val = Key = term()

Returns alist of keysthat are associated with the value Val in the process dictionary, for example:

> put(mary, {1, 2}),
put(had, {1, 2}),

put(a, {1, 2}),
put(little, {1, 2}),
put(dog, {1, 3}),
put(lamb, {1, 2}),

get keys({1l, 2}).
[mary,had,a, little, lamb]

erlang:get stacktrace() -> [stack_item()]
Types:
stack item() =

{Module :: module(),
Function :: atom(),
Arity :: arity() | (Args :: [term()]),

Location
[{file, Filename :: string()} |
{line, Line :: integer() >= 1}1}

Gets the call stack back-trace (stacktrace) of the last exception in the caling process as a list of
{Modul e, Function, Arity, Locati on} tuples. Field Ari t y inthefirst tuple can be the argument list of that

function call instead of an arity integer, depending on the exception.

If there has not been any exceptionsin aprocess, the stacktraceis|] . After acode changefor the process, the stacktrace

canasoberesetto[].

The stacktrace is the same data as operator cat ch returns, for example:

{'EXIT', {badarg,Stacktrace}} = catch abs(x)

124 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Locat i on isa (possibly empty) list of two-tuples that can indicate the location in the source code of the function.
Thefirst element is an atom describing the type of information in the second element. The following items can occur:
file
The second element of the tupleisastring (list of characters) representing the filename of the sourcefile of the
function.
line
The second element of the tuple isthe line number (an integer > 0) in the source file where the exception
occurred or the function was called.

Seedsoerror/landerror/ 2.

group leader() -> pid()
Returns the process identifier of the group leader for the process evaluating the function.

Every process is a member of some process group and all groups have a group leader. All 1/O from the group is
channeled to the group leader. When anew processis spawned, it gets the same group leader as the spawning process.
Initially, at system startup, i ni t isboth its own group leader and the group leader of all processes.

group leader(GroupLeader, Pid) -> true
Types:
GroupLeader = Pid = pid()
Sets the group leader of Pi d to Gr oupLeader . Typicaly, thisis used when a process started from a certain shell
isto have another group leader thani ni t .

Seeasogroup_| eader /0.

halt() -> no_return()
Thesameashal t (0, []).Example

> halt().
0S_promptss

halt(Status) -> no return()
Types:

Status = integer() >= 0 | abort | string()
Thesameas hal t (Status, []).Example

> halt(17).
0os_prompt% echo $?
17

0S_promptss

halt(Status, Options) -> no return()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 125

erlang

Status = integer() >= 0 | abort | string()
Options = [Option]
Option = {flush, boolean()}

St at us must be anon-negative integer, astring, or the atom abor t . Halts the Erlang runtime system. Has no return
value. Depending on St at us, the following occurs:

integer()
The runtime system exits with integer value St at us as status code to the calling environment (OS).

string()
An Erlang crash dump is produced with St at us as slogan. Then the runtime system exits with status code 1.
Note that only code pointsin the range 0-255 may be used and the string will be truncated if longer than 200
characters.

abort
The runtime system aborts producing a core dump, if that is enabled in the OS.

Note:

On many platforms, the OS supports only status codes 0-255. A too large status code is truncated by clearing
the high bits.

For integer St at us, the Erlang runtime system closes all ports and allows async threads to finish their operations
before exiting. To exit without such flushing, use Opt i on as{f | ush, f al se}.

For statusesst ri ng() andabort, optionf | ush isignored and flushing is not done.

erlang:hash(Term, Range) -> integer() >=1
Types:
Term = term()
Range = integer() >=1
Returns a hash value for Ter mwithin therange 1. . Range. The maximum rangeis 1..227-1.

Warning:

This BIF is deprecated, as the hash value can differ on different architectures. The hash values for integer
terms > 2727 and large bhinaries are poor. The BIF is retained for backward compatibility reasons (it can have
been used to hash records into a file), but all new code is to use one of the BIFs er | ang: phash/ 2 or
er | ang: phash2/ 1, 2 instead.

hd(List) -> term()
Types:
List = [term(), ...]
Returnsthe head of Li st , that is, the first element, for example:

> hd([1,2,3,4,5]).
1

126 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Allowed in guard tests.
Failure: badar g if Li st istheempty list[] .

erlang:hibernate(Module, Function, Args) -> no return()
Types:
Module = module()
Function = atom()
Args = [term()]
Puts the calling process into a wait state where its memory allocation has been reduced as much as possible. Thisis
useful if the process does not expect to receive any messages soon.

The process is awaken when amessage is sent to it, and control resumesin Modul e: Funct i on with the arguments
specified by Ar gs with the call stack emptied, meaning that the process terminates when that function returns. Thus
erl ang: hi ber nat e/ 3 never returnsto itscaller.

If the process has any messagein its message queue, the processis awakened immediately in the sameway as described
earlier.

In more technical terms, er | ang: hi ber nat e/ 3 discards the call stack for the process, and then garbage collects
the process. After this, all live dataisin one continuous heap. The heap is then shrunken to the exact same size asthe
live datathat it holds (even if that size is less than the minimum heap size for the process).

If the size of the live datain the processis | ess than the minimum heap size, the first garbage collection occurring after
the process is awakened ensures that the heap size is changed to a size not smaller than the minimum heap size.

Notice that emptying the call stack means that any surrounding cat ch is removed and must be re-inserted after
hibernation. One effect of this is that processes started using pr oc_| i b (also indirectly, such as gen_ser ver
processes), areto use proc_l i b: hi ber nat e/ 3 instead, to ensure that the exception handler continues to work
when the process wakes up.

erlang:insert element(Index, Tuplel, Term) -> Tuple2
Types:

Index = integer() >=1

1..tuple size(Tuplel) + 1

Tuplel = Tuple2 = tuple()

Term = term()

Returns a new tuple with element Ter minserted at position | ndex in tuple Tupl el. All elements from position
I ndex and upwards are pushed one step higher in the new tuple Tupl e2. Example:

> erlang:insert element(2, {one, two, three}, new).
{one, new, two, three}

integer to binary(Integer) -> binary()
Types:
Integer = integer()
Returns a binary corresponding to the text representation of | nt eger , for example:

> integer to binary(77).

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 127

erlang

<<"77">>

integer to binary(Integer, Base) -> binary()

Types:
Integer = integer()
Base = 2..36

Returns a binary corresponding to the text representation of | nt eger in base Base, for example:

> integer to binary(1023, 16).
<<"3FF">>

integer to list(Integer) -> string()
Types:
Integer = integer()
Returns a string corresponding to the text representation of | nt eger , for example:

> integer to list(77).
n 77 n

integer to list(Integer, Base) -> string()

Types:
Integer = integer()
Base = 2..36

Returns a string corresponding to the text representation of |1 nt eger in base Base, for example:

> integer to list(1023, 16).
W3EF™

iolist size(Item) -> integer() >= 0
Types:
Item = iolist() | binary()

Returns an integer, that isthe size in bytes, of the binary that would betheresult of i ol i st _to_bi nary(lten),
for example:

> iolist size([1,2]<<3,4>>]).
4

iolist to binary(IoListOrBinary) -> binary()
Types:

128 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

IoListOrBinary = iolist() | binary()
Returns a binary that is made from the integers and binariesin | oLi st Or Bi nar y, for example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>,

<<4,5>>

> Bin3 = <<6>>.

<<6>>

> iolist to binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

is alive() -> boolean()
Returnst r ue if thelocal nodeisalive (that is, if the node can be part of adistributed system), otherwisef al se.

is atom(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan atom, otherwisef al se.

Allowed in guard tests.

is binary(Term) -> boolean()
Types:

Term = term()
Returnst r ue if Ter misabinary, otherwisef al se.
A binary always contains a complete number of bytes.
Allowed in guard tests.

is bitstring(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misabitstring (including a binary), otherwisef al se.

Allowed in guard tests.

is boolean(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter mistheatomt r ue or theatom f al se (that is, aboolean). Otherwise returnsf al se.

Allowed in guard tests.

erlang:is builtin(Module, Function, Arity) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 129

erlang

Module = module()
Function = atom()
Arity = arity()
This BIF is useful for builders of cross-reference tools.

Returnst r ue if Modul e: Function/ Ari ty isaBIFimplemented in C, otherwisef al se.

is float(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misafloating point number, otherwisef al se.

Allowed in guard tests.

is function(Term) -> boolean()
Types.

Term = term()
Returnst r ue if Ter misafun, otherwisef al se.

Allowed in guard tests.

is function(Term, Arity) -> boolean()
Types:
Term = term()
Arity = arity()
Returnst r ue if Ter misafun that can be applied with Ar i t y number of arguments, otherwisef al se.
Allowed in guard tests.

is _integer(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misan integer, otherwisef al se.

Allowed in guard tests.

is list(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misalist with zero or more elements, otherwisef al se.

Allowed in guard tests.

is map(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misamap, otherwisef al se.

130 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Allowed in guard tests.

is number(Term) -> boolean()
Types:
Term = term()

Returnst r ue if Ter misan integer or afloating point number. Otherwisereturnsf al se.

Allowed in guard tests.

is pid(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaprocessidentifier, otherwisef al se.

Allowed in guard tests.

is port(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misaport identifier, otherwisef al se.
Allowed in guard tests.

is process alive(Pid) -> boolean()
Types:

Pid = pid()
Pi d must refer to a process at the local node.

Returnst r ue if the process exists and is alive, that is, is not exiting and has not exited. Otherwisereturnsf al se.

is record(Term, RecordTag) -> boolean()
Types:

Term = term()

RecordTag = atom()

Returnst r ue if Ter misatuple and itsfirst element isRecor dTag. Otherwisereturnsf al se.

Note:

Normally the compiler treatscallstoi s_r ecor d/ 2 especialy. It emits codeto verify that Ter misatuple, that
itsfirst element is Recor dTag, and that the size is correct. However, if Recor dTag is not aliteral atom, the

BIFi s_record/ 2 iscaledinstead and the size of the tupleis not verified.

Allowed in guard tests, if Recor dTag isaliteral atom.

is record(Term, RecordTag, Size) -> boolean()
Types:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 131

erlang

Term = term()

RecordTag = atom()

Size = integer() >= 0
Recor dTag must be an atom.
Returnst r ue if Ter misatuple, itsfirst elementisRecor dTag, and itssizeis Si ze. Otherwisereturnsf al se.
Allowed in guard testsif Recor dTag isaliteral atom and Si ze isalitera integer.

Note:

This BIF is documented for completeness. Usually i s_r ecor d/ 2 isto be used.

is reference(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misareference, otherwisef al se.

Allowed in guard tests.

is tuple(Term) -> boolean()
Types:
Term = term()
Returnst r ue if Ter misatuple, otherwisef al se.

Allowed in guard tests.

length(List) -> integer() >= 0
Types:

List = [term()]
Returns the length of Li st , for example:

> length(I[1,2,3,4,5,6,7,8,9]).
9

Allowed in guard tests.

link (PidOrPort) -> true
Types.
PidOrPort = pid() | port()

Createsalink between the calling process and another process (or port) Pi dOr Por t | if thereisnot such alink aready.
If a process attempts to create alink to itself, nothing is done. Returnst r ue.

If Pi dOr Port does not exist, the behavior of the BIF depends on if the calling process is trapping exits or not (see
process_fl ag/ 2):

132 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

» If thecaling processis not trapping exits, and checking Pi dOr Por t ischeap (that is, if Pi dOr Por t isloca),
I i nk/ 1 failswith reason nopr oc.

e Otherwise, if the calling processis trapping exits, and/or Pi dOr Por t isremote, | i nk/ 1 returnst r ue, but an
exit signal with reason nopr oc issent to the calling process.

list to atom(String) -> atom()
Types:
String = string()
Returns the atom whose text representationis St r i ng.
String can only contain 1SO-latin-1 characters (that is, numbers < 256) as the implementation does not allow

Unicode characters equal to or above 256 in atoms. For more information on Unicode support in atoms, see note on
UTF-8 encoded atomsin section "External Term Format" in the User's Guide.

Example:

> list to atom("Erlang").
'Erlang'’

list to binary(IoList) -> binary()
Types:
ToList = iolist()
Returns a binary that is made from the integers and binariesin | oLi st , for example:

> Binl = <<1,2,3>>.

<<1,2,3>>

> Bin2 = <<4,5>>,

<<4,5>>

> Bin3 = <<6>>.

<<6>>

> list to binary([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

list to bitstring(BitstringList) -> bitstring()
Types:
BitstringlList = bitstring_list()
bitstring list() =
maybe improper list(byte() | bitstring() | bitstring_list(),
bitstring() | [1)

Returns a bitstring that is made from the integers and bitstrings in Bi t stringLi st. (The last tail in
Bi t stri nglLi st isallowed to be abitstring.) Example:

> Binl = <<1,2,3>>.
<<1,2,3>>

> Bin2 = <<4,5>>.
<<4,5>>

> Bin3 = <<6,7:4>>.
<<6,7:4>>

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 133

erlang

> list to bitstring([Binl,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6,7:4>>

list to existing atom(String) -> atom()
Types:
String = string()
Returns the atom whose text representation is St r i ng, but only if there already exists such atom.

Failure: badar g if there does not already exist an atom whose text representationis St r i ng.

list to float(String) -> float()
Types:
String = string()
Returns the float whose text representationis St r i ng, for example:

> list to float("2.2017764e+0").
2.2017764

Failure: badar g if St ri ng contains a bad representation of afloat.
list to integer(String) -> integer()
Types:

String = string()
Returns an integer whose text representation is St r i ng, for example:

> list to integer("123").
123

Failure: badar g if St ri ng contains a bad representation of an integer.

list to integer(String, Base) -> integer()

Types:
String = string()
Base = 2..36

Returns an integer whose text representation in base Base is St r i ng, for example:

> list to integer("3FF", 16).
1023

Failure: badar g if St ri ng contains a bad representation of an integer.

list_to pid(String) -> pid()
Types:

134 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

String = string()

Returns a process identifier whose text representationisa St r i ng, for example:

> list to pid("<0.4.1>").
<0.4.1>

Failure: badar g if St ri ng contains a bad representation of a process identifier.

Warning:
This BIF isintended for debugging and is not to be used in application programs.

list to tuple(List) -> tuple()
Types:

List = [term()]
Returns atuple corresponding to Li st , for example

> list to tuple([share, ['Ericsson B', 163]]).
{share, ['Ericsson B', 163]}

Li st can contain any Erlang terms.

load module(Module, Binary) -> {module, Module} | {error, Reason}

Types:
Module = module()
Binary = binary()
Reason = badfile | not purged | on load

If Bi nary contains the object code for module Modul e, this BIF loads that object code. If the code for module
Modul e already exists, all export references are replaced so they point to the newly loaded code. The previously
loaded code is kept in the system as old code, as there can still be processes executing that code.

Returns either { nodul e, Modul e}, or{error, Reason} if loadingfails. Reason isone of the following:

badfile
The object code in Bi nar y has an incorrect format or the object code contains code for another module than
Modul e.

not _pur ged
Bi nar y contains amodule that cannot be loaded because old code for this module already exists.

Warning:

This BIF isintended for the code server (see code(3)) and is not to be used elsewhere.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 135

erlang

erlang:load nif(Path, LoadInfo) -> ok | Error
Types.

Path = string()

LoadInfo = term()

Error = {error, {Reason, Text :: string()}}

Reason =
load failed | bad lib | load | reload | upgrade | old code

Note:

Before Erlang/OTP R14B, NIFs were an experimental feature. Versions before Erlang/OTP R14B can have
different and possibly incompatible NI F semantics and interfaces. For example, in Erlang/OTP R13B03 thereturn
value on failurewas{ er r or, Reason, Text }.

Loads and links a dynamic library containing native implemented functions (NIFs) for amodule. Pat h is afile path
to the shareable object/dynamic library file minus the OS-dependent file extension (. so for Unix and . dl | for
Windows). Notice that on most OSs the library has to have a different name on disc when an upgrade of the nif is
done. If the name is the same, but the contents differ, the old library may be loaded instead. For information on how
toimplement aNIF library, seeer| _ni f(3).

Loadl nf o can be any term. It is passed on to the library as part of the initialization. A good practiceisto include a
module version number to support future code upgrade scenarios.

Thecall tol oad_ni f/ 2 must be made directly from the Erlang code of the module that the NIF library belongs to.
It returns either ok, or { err or, { Reason, Text } } if loading fails. Reason is one of the following atoms while
Text isahuman readable string that can give more information about the failure:

| oad_failed
The OSfailed to load the NIF library.
bad_lib
The library did not fulfill the requirements as a NIF library of the calling module.
load | reload | upgrade
The corresponding library callback was unsuccessful.
ol d_code
Thecal tol oad_ni f/ 2 was made from the old code of a module that has been upgraded; thisis not allowed.

erlang:loaded() -> [Module]
Types:
Module = module()
Returnsalist of all loaded Erlang modules (current and old code), including preloaded modules.

Seedso code(3).

erlang:localtime() -> DateTime
Types:
DateTime = cal endar: dateti ne()
Returnsthecurrent local dateandtime, { { Year, Mont h, Day}, {Hour, M nute, Second}},forexample

136 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

> erlang:localtime().
{{1996,11,6},{14,45,17}}

The time zone and Daylight Saving Time correction depend on the underlying OS.

erlang:localtime to universaltime(Localtime) -> Universaltime
Types.
Localtime = Universaltime = cal endar: dateti me()

Convertslocal date and timeto Universal Time Coordinated (UTC), if supported by the underlying OS. Otherwise no
conversionisdoneand Local t i e isreturned. Example:

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}).
{{1996,11,6},{13,45,17}}

Failure: badar g if Local ti nme denotesaninvalid date and time.

erlang:localtime to universaltime(Localtime, IsDst) ->
Universaltime

Types:
Localtime = Universaltime = cal endar: dateti me()
IsDst = true | false | undefined

Converts local date and time to Universal Time Coordinated (UTC) as
erlang:localtine_to_universaltimnme/1,butthecaller decidesif Daylight Saving Timeis active.

If |sDst == true, Localtine is during Daylight Saving Time, if | sDst == false it
is not. If |sDst == undefi ned, the underlying OS can guess, which is the same as calling
erlang:localtine_to _universaltinme(Localtine).

Examples:

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, true).
{{1996,11,6},{12,45,17}}

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, false).
{{1996,11,6},{13,45,17}}

> erlang:localtime to universaltime({{1996,11,6},{14,45,17}}, undefined).
{{1996,11,6},{13,45,17}}

Failure: badar g if Local ti me denotesaninvalid date and time.

make ref() -> reference()
Returns a unique reference. The reference is unique among connected nodes.

Warning:

Known issue: When a node is restarted multiple times with the same node name, references created on a newer
node can be mistaken for areference created on an older node with the same node name.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 137

erlang

erlang:make tuple(Arity, InitialValue) -> tuple()
Types:
Arity = arity()
InitialValue = term()
Creates anew tuple of the specified Ari t y, whereall elementsarel ni ti al Val ue, for example:

> erlang:make tuple(4, [1).
{01,01,01,[1}

erlang:make tuple(Arity, DefaultValue, InitList) -> tuple()
Types:
Arity = arity()
DefaultValue = term()
InitList = [{Position :: integer() >= 1, term()}]
Creates a tuple of size Ari ty, where each element has value Def aul t Val ue, and then fills in values from
I nitList.Eachlistelementinl nitLi st must beatwo-tuple, where the first element is a position in the newly

created tuple and the second element isany term. If aposition occurs more than oncein thelist, the term corresponding
to the last occurrence is used. Example:

> erlang:make tuple(5, [], [{2,ignored},{5,zz},{2,aa}]).
{[1,aa,[],[],zz}

map_size(Map) -> integer() >= 0
Types:
Map = #{}
Returns an integer, which is the number of key-value pairsin Map, for example:

> map_size(#{a=>1, b=>2, c=>3}).
3

Allowed in guard tests.

erlang:match spec test(MatchAgainst, MatchSpec, Type) ->
TestResult

Types.
MatchAgainst = [term()] | tuple()
MatchSpec = term()
Type = table | trace

TestResult =
{ok, term(), [return_trace], [{error | warning, string()}1} |
{error, [{error | warning, string()}1}

Testsamatch specificationusedincalstoet s: sel ect/ 2and erl ang: t race_pat t er n/ 3. Thefunction tests
both amatch specification for "syntactic" correctness and runs the match specification against the object. If the match

138 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

specification contains errors, thetuple{ er r or, Error s} isreturned, where Er r or s isalist of natural language
descriptions of what was wrong with the match specification.

If Type is tabl e, the object to match against is to be a tuple. The function then returns { ok, Resul t,
[1. Warni ngs}, where Resul t iswhat would have been theresult in areal et s: sel ect/ 2 cdl, or f al se if
the match specification does not match the object tuple.

If Type istrace, the object to match against is to be a list. The function returns { ok, Result, Fl ags,
War ni ngs}, whereResul t isone of the following:

e trueif atrace messageisto be emitted
« fal seif atrace messageis not to be emitted
* The message term to be appended to the trace message

FI ags isalist containing all the trace flags to be enabled, currently thisisonly r et urn_t r ace.
Thisis auseful debugging and test tool, especially when writing complicated match specifications.
Seedsoets:test ns/ 2.

max(Terml, Term2) -> Maximum
Types:
Terml = Term2 = Maximum = term()

Returnsthe largest of Ter nil and Ter n2. If theterms are equal, Ter m is returned.

erlang:md5(Data) -> Digest
Types.

Data = iodata()

Digest = binary()

Computes an MD5 message digest from Dat a, where the length of the digest is 128 bits (16 bytes). Dat a isabinary
or alist of small integers and binaries.

For more information about MD5, see RFC 1321 - The MD5 M essage-Digest Algorithm.

Warning:
The MD5 Message-Digest Algorithm is not considered safe for code-signing or software-integrity purposes.

erlang:md5 final(Context) -> Digest
Types.
Context = Digest = binary()

Finishes the update of an MD5 Cont ext and returns the computed VD5 message digest.

erlang:md5 init() -> Context
Types:
Context = binary()
Creates an MD5 context, to be used in the following callsto nd5_updat e/ 2.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 139

href

erlang

erlang:md5 update(Context, Data) -> NewContext
Types.

Context = binary()

Data = iodata()

NewContext = binary()

Update an MD5 Cont ext with Dat a and returns a NewCont ext .

erlang:memory() -> [{Type, Size}]
Types:
Type menory_type()
Size integer() >= 0
memory type() =
total |
processes |
processes used |
system |
atom |
atom used |
binary |
code |
ets |
low |
maximum

Returns a list with information about memory dynamically allocated by the Erlang emulator. Each list element isa
tuple { Type, Size}. Thefirst element Type isan atom describing memory type. The second element Si ze is
the memory sizein bytes.

Memory types:
t ot al

Thetotal amount of memory currently allocated. Thisisthe same asthe sum of the memory sizefor pr ocesses
andsystem

processes
The total amount of memory currently allocated for the Erlang processes.
processes_used

The total amount of memory currently used by the Erlang processes. This is part of the memory presented as
processes memory.

system

Thetotal amount of memory currently allocated for the emulator that is not directly related to any Erlang process.
Memory presented as pr ocesses isnot included in this memory.

atom

The total amount of memory currently allocated for atoms. This memory is part of the memory presented as
syst emmemory.

at om used

The total amount of memory currently used for atoms. This memory is part of the memory presented as at om
memory.

140 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

bi nary

The total amount of memory currently allocated for binaries. This memory is part of the memory presented as
syst emmemory.

code

The total amount of memory currently allocated for Erlang code. This memory is part of the memory presented
assyst emmemory.

ets

The total amount of memory currently allocated for ETS tables. This memory is part of the memory presented
assyst emmemory.

| ow

Only on 64-bit halfword emulator. The total amount of memory allocated in low memory areas that are restricted
to < 4 GB, although the system can have more memory.

Can beremoved in afuture release of the halfword emulator.
maxi num

The maximum total amount of memory allocated since the emulator was started. Thistupleisonly present when
the emulator is run with instrumentation.

For information on how to run the emulator with instrumentation, see i nst rument (3) and/orer! (1).

Note:

The syst emvalue is not complete. Some allocated memory that is to be part of thisvalue is not.

When the emulator isrun withinstrumentation, thesy st emvalueismore accurate, but memory directly allocated
for mal | oc (and friends) is till not part of the syst emvalue. Direct cals to mal | oc are only done from
OS-specific runtime libraries and perhaps from user-implemented Erlang drivers that do not use the memory
allocation functions in the driver interface.

Asthet ot al valueisthe sum of pr ocesses and syst em the error in syst empropagates to the t ot al
value.

The different amounts of memory that are summed are not gathered atomically, which introduces an error in
the result.

The different values have the following relation to each other. Values beginning with an uppercase letter is not part
of the result.

total = processes + system

processes = processes used + ProcessesNotUsed

system = atom + binary + code + ets + OtherSystem
atom = atom used + AtomNotUsed

RealTotal = processes + RealSystem

RealSystem = system + MissedSystem

More tuplesin the returned list can be added in afuture release.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 141

erlang

Note:

Thet ot al valueis supposed to be the total amount of memory dynamically allocated by the emulator. Shared
libraries, the code of the emulator itself, and the emulator stacks are not supposed to be included. That is, the
t ot al valueisnot supposed to be equal to the total size of all pages mapped to the emulator.

Also, because of fragmentation and prereservation of memory areas, the size of the memory segments containing
the dynamically allocated memory blocks can be much larger than the total size of the dynamically allocated
memory blocks.

Note:

Asfrom ERTS5.6.4, er | ang: menor y/ O requiresthat all ert s_al | oc(3) allocators are enabled (default
behavior).

Failure: not sup ifanerts_al | oc(3) alocator has been disabled.

erlang:memory(Type :: menory_type()) -> integer() >= 0
erlang:memory(TypeList :: [menory_type()]) ->
[{menory_type(), integer() >= 0}]
Types:
memory type() =

total |

processes |

processes used |

system |

atom |

atom used |

binary |

code |

ets |

low |

maximum

Returns the memory size in bytes allocated for memory of type Type. The argument can also be specified as a list
of menory_type() atoms, in which case a corresponding list of { renory_type(), Size :: integer
>= 0} tuplesisreturned.

Note:

Asfrom ERTS5.6.4, er | ang: menor y/ 1 requiresthat al erts_al | oc(3) allocators are enabled (default
behavior).

Failures:

badar g
If Type isnot one of the memory types listed in the description of er | ang: nenory/ 0.

142 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

badar g

If maxi mumis passed as Ty pe and the emulator is not run in instrumented mode.
not sup

Ifanerts_al |l oc(3) alocator has been disabled.

Seeasoer ! ang: nenory/ 0.

min(Terml, Term2) -> Minimum
Types:
Terml = Term2 = Minimum = term()

Returnsthe smallest of Ter mL and Ter n2. If theterms are equal, Ter ml is returned.

module loaded(Module) -> boolean()
Types:
Module = module()
Returnst r ue if the module Modul e isloaded, otherwisef al se. It does not attempt to load the module.

Warning:

This BIF isintended for the code server (see code(3)) and is not to be used elsewhere.

monitor(Type :: process, Item :: nonitor_process_identifier()) ->
MonitorRef

monitor(Type :: port, Item :: nonitor_port_identifier()) ->
MonitorRef

monitor(Type :: time offset, Item :: clock service) -> MonitorRef

Types:

MonitorRef = reference()
registered name() = atom()

registered process identifier() =
regi stered_nanme() | {registered_nane(), node()}

monitor process identifier() =
pid() | registered_process_identifier()

monitor port identifier() = port() | registered_nanme()

Sends a monitor request of type Type to the entity identified by | t em If the monitored entity does not exist or it
changes monitored state, the caller of moni t or / 2 is notified by a message on the following format:

{Tag, , , Object, Info}

Note:
The monitor request is an asynchronous signal. That is, it takes time before the signal reaches its destination.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 143

erlang

Type can be one of the following atoms: pr ocess, port orti me_of f set .

A process or port monitor istriggered only once, after that it is removed from both monitoring process and the
monitored entity. Monitors are fired when the monitored process or port terminates, does not exist at the moment of
creation, or if the connection to it islost. If the connection to it islost, we do not know if it still exists. The monitoring
is also turned off when demonitor/1 is called.

A process or port monitor by name resolves the Regi st er edNane to pi d() or port () only once at the
moment of monitor instantiation, later changes to the name registration will not affect the existing monitor.

When apr ocess or port monitor istriggered, a' DOAN message is sent that has the following pattern:

{'DOWN', MonitorRef, Type, Object, Info}

In the monitor message Moni t or Ref and Type are the same as described earlier, and:
hj ect

The monitored entity, which triggered the event. When monitoring alocal processor port, Cbj ect will be equal
tothepi d() or port () that was being monitored. When monitoring process or port by name, Gbj ect will
haveformat { Regi st er edNane, Node} whereRegi st er edNarre isthe name which has been used with
nmoni t or/ 2 call and Node islocal or remote node name (for ports monitored by name, Node is always local
node name).

Info

Either the exit reason of the process, nopr oc (process or port did not exist at the time of monitor creation), or
noconnect i on (no connection to the node where the monitored process resides).

If an attempt is made to monitor a process on an older node (where remote process monitoring is not implemented or
where remote process monitoring by registered name is not implemented), the call failswith badar g.

Note:

Theformat of the' DOWN' message changed in ERTS 5.2 (Erlang/OTP R9B) for monitoring by r egister ed name.
Element Cbj ect of the' DOAN message could in earlier versions sometimes be the process identifier of the
monitored process and sometimes be the registered name. Now element Qbj ect is always a tuple consisting
of the registered name and the node name. Processes on new nodes (ERTS 5.2 or higher versions) always get
' DOWN' messages on the new format even if they are monitoring processes on old nodes. Processes on old nodes
always get' DOWN' messages on the old format.

Monitoring apr ocess

Creates monitor between the current process and another process identified by | t em which can be a pi d()
(local or remote), an atom Regi st er edNane or a tuple { Regi st er edNanme, Node} for a registered
process, located elsewhere.

Monitoring apor t

Creates monitor between the current process and aport identified by | t em which canbeaport () (onlylocal),
an atom Regi st er edNan®e or atuple { Regi st er edNane, Node} for aregistered port, located on this
node. Note, that attempt to monitor aremote port will result in badar g.

Monitoring at i me_of f set

Monitors changesint i ne of f set between Erlang monotonic time and Erlang systemtime. Onevalid | t em
existsincombinationwiththet i me_of f set Type, namely theatomcl ock_ser vi ce. Noticethat theatom

144 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

cl ock_servi ce isnot the registered name of a process. In this case it serves as an identifier of the runtime
systeminternal clock service at current runtime system instance.

The monitor is triggered when the time offset is changed. This either if the time offset value is changed, or if the
offset is changed from preliminary to final during finalization of the time offset when the single time warp mode
is used. When a change from preliminary to final time offset is made, the monitor is triggered once regardless
of whether the time offset value was changed or not.

If the runtime system isin multi time warp mode, the time offset is changed when the runtime system detects that
the OS system time has changed. The runtime system does, however, not detect thisimmediately when it occurs.
A task checking the time offset is scheduled to execute at |east once a minute, so under normal operation thisis
to be detected within a minute, but during heavy load it can take longer time.

The monitor is not automatically removed after it has been triggered. That is, repeated changes of the time offset
trigger the monitor repeatedly.

When the monitor istriggered a' CHANGE' message is sent to the monitoring process. A ' CHANGE' message
has the following pattern:

{'CHANGE', MonitorRef, Type, Item, NewTimeOffset}

where Moni t or Ref , Type, and | t emare the same as described above, and NewTi mef f set is the new
time offset.

When the ' CHANGE' message has been received you are guaranteed not to retrieve the old time offset when
calling erl ang: ti nme_of f set (). Notice that you can observe the change of the time offset when calling
erlang: tine_of fset () beforeyou getthe' CHANGE' message.

Making several callstononi t or / 2 forthesamel t emand/or Ty pe isnot an error; it resultsin as many independent
monitoring instances.

The monitor functionality is expected to be extended. That is, other Typesand | t ens are expected to be supported
in afuture release.

Note:

If or when noni t or / 2 isextended, other possible valuesfor Tag, Obj ect , and | nf o inthe monitor message
will be introduced.

monitor node(Node, Flag) -> true

Types:
Node = node()
Flag = boolean()

Monitor the status of the node Node. If Fl ag ist r ue, monitoring is turned on. If Fl ag isf al se, monitoring is
turned off.

Making several calstononi t or _node(Node, true) for the same Node isnot an error; it results in as many
independent monitoring instances.

If Node fails or does not exist, the message { nodedown, Node} isdelivered to the process. If aprocess has made
two callstononi t or _node(Node, true) and Node terminates, two nodedown messages are delivered to the
process. If there is no connection to Node, an attempt is made to create one. If this fails, anodedown message is
delivered.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 145

erlang

Nodes connected through hidden connections can be monitored as any other nodes.

Failure: badar g if the local nodeis not alive.

erlang:monitor node(Node, Flag, Options) -> true

Types:
Node = node()
Flag = boolean()

Options = [Option]

Option = allow passive connect
Behaves as nonitor_node/ 2 except that it alows an extra option to be specified, namely
al | ow_passi ve_connect . This option alows the BIF to wait the normal network connection time-out for the
monitored node to connect itself, even if it cannot be actively connected from this node (that is, it is blocked). The

state where this can be useful can only be achieved by using the Kernel option di st _aut o_connect once. If
that option is not used, option al | ow_passi ve_connect has no effect.

Note:

Optional | ow_passi ve_connect isusedinternally and is seldom needed in applications where the network
topology and the Kernel options in effect are known in advance.

Failure: badar g if the local node is not alive or the option list is malformed.

erlang:monotonic time() -> integer()

Returns the current Erlang monotonic timein nat i ve time unit. Thisis amonotonically increasing time since some
unspecified point in time.

Note:

Thisisa monatonically increasing time, but not a strictly monotonically increasing time. That is, consecutive
calstoer| ang: nonot oni ¢_t i me/ 0 can produce the same result.

Different runtime system instances will use different unspecified pointsin time as base for their Erlang monotonic
clocks. That is, it is pointless comparing monotonic times from different runtime system instances. Different
runtime system instances can also place this unspecified point in time different relative runtime system start. It
can be placed in the future (time at start is a negative value), the past (time at start is a positive value), or the
runtime system start (time at start is zero). The monotonic time at runtime system start can be retrieved by calling
erl ang: system.info(start_tine).

erlang:monotonic time(Unit) -> integer()
Types:
Unit = tine_unit()
Returns the current Erlang monotonic time converted into the Uni t passed as argument.

Same as cdling erl ang: convert tinme_unit(erlang: monotonic _time(), native, Unit),
however optimized for commonly used Uni t s.

146 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

erlang:nif error(Reason) -> no_return()
Types.
Reason = term()
Works exactly like er ror/ 1, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a stub

function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer does not generate false
warnings.

erlang:nif error(Reason, Args) -> no return()
Types:
Reason = term()
Args = [term()]
Works exactly like er r or / 2, but Dialyzer thinks that this BIF will return an arbitrary term. When used in a stub

function for a NIF to generate an exception when the NIF library is not loaded, Dialyzer does not generate false
warnings.

node() -> Node
Types:
Node = node()
Returns the name of the local node. If the node is not alive, nonode@ohost isreturned instead.

Allowed in guard tests.

node(Arg) -> Node

Types:
Arg = pid() | port() | reference()
Node = node()

Returns the node where Ar g originates. Ar g can be a process identifier, a reference, or a port. If the local node is
not alive, nonode@ohost isreturned.

Allowed in guard tests.

nodes() -> Nodes
Types.
Nodes = [node()]

Returns alist of all visible nodesin the system, except the local node. Same asnhodes(vi si bl e) .

nodes(Arg) -> Nodes

Types:
Arg = NodeType | [NodeTypel
NodeType = visible | hidden | connected | this | known
Nodes = [node()]

Returns alist of nodes according to the argument specified. The returned result, when the argument isalist, isthe list
of nodes satisfying the disunction(s) of the list elements.

NodeTypes:

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 147

erlang

visible

Nodes connected to this node through normal connections.
hi dden

Nodes connected to this node through hidden connections.
connect ed

All nodes connected to this node.
this

This node.
known

Nodes that are known to this node. That is, connected nodes and nodes referred to by process
identifiers, port identifiers, and references located on this node. The set of known nodes is
garbage collected. Notice that this garbage collection can be delayed. For more information, see
erl ang: system i nfo(del ayed _node_tabl e gc).

Some equalities: [node()] = nodes(this),nodes(connected) = nodes([visible, hidden]),
andnodes() = nodes(visible).

now() -> Timestamp
Types:
Timestamp = tinmestanp()
timestamp() =
{MegaSecs :: integer() >= 0,

Secs :: integer() >= 0,
MicroSecs :: integer() >= 0}
Warning:

Thisfunction is deprecated. Do not useit.

For more information, see section Time and Time Correction in the User's Guide. Specifically, section Dos and
Dont's describes what to use instead of er | ang: now/ 0.

Returnsthetuple{ MegaSecs, Secs, M croSecs},whichistheeapsedtimesince00:00GMT, January 1, 1970
(zero hour), if provided by the underlying OS. Otherwise some other point in timeis chosen. It is also guaranteed that
the following callsto this BIF return continuously increasing values. Hence, the return value from er | ang: now/ 0
can be used to generate unique time stamps. If it is called in atight loop on a fast machine, the time of the node can
become skewed.

Can only be used to check the local time of day if the time-zone information of the underlying OS is properly
configured.

open port(PortName, PortSettings) -> port()

Types:
PortName =
{spawn, Command :: string() | binary()} |
{spawn_driver, Command :: string() | binary()} |
{spawn_executable, FileName :: file:nane()} |

148 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{fd, In :: integer() >= 0, OQut :: integer() >= 0}
PortSettings = [Opt]
Opt =
{packet, N :: 1 | 2 | 4} |
stream |
{line, L :: integer() >= 0} |
{cd, Dir :: string() | binary()} |
{env, Env :: [{Name :: string(), Val :: string() | false}l} |
{args, [string() | binary()1} |
{arg0, string() | binary()} |
exit status |
use stdio |
nouse stdio |
stderr _to stdout |
in |
out |
binary |
eof |
{parallelism, Boolean :: boolean()} |
hide
Returns a port identifier as the result of opening a new Erlang port. A port can be seen as an external Erlang process.

The name of the executable as well as the arguments specifed in cd, env, ar gs, and ar g0 are subject to Unicode
filename trandation if the system is running in Unicode filename mode. To avoid trandation or to force, for example
UTF-8, supply the executable and/or arguments as a binary in the correct encoding. For details, see the module
file(3),thefunctionfil e: native_name_encodi ng/ 0inKernel,andthe Usi ng Uni code i n Erl ang
User's Guide.

Note:

The characters in the name (if specified as a list) can only be > 255 if the Erlang virtual machine is started in
Unicode filename transl ation mode. Otherwise the name of the executable islimited to the |SO Latin-1 character
Set.

Por t Nanes:
{spawn, Command}

Starts an external program. Command is the name of the external program to be run. Cormand runs outside the
Erlang work space unless an Erlang driver with the name Commrand is found. If found, that driver is started. A
driver runsin the Erlang work space, which meansthat it is linked with the Erlang runtime system.

When starting external programson Solaris, thesystemcall vf or k isusedin preferencetof or k for performance
reasons, athough it has a history of being less robust. If there are problems using vf or k, setting environment
variable ERL_NO VFORK to any value causesf or k to be used instead.

For external programs, PATH is searched (or an equivalent method is used to find programs, depending on the
0S). Thisis done by invoking the shell on certain platforms. The first space-separated token of the command is
considered as the name of the executable (or driver). This (among other things) makes this option unsuitable for
running programs with spacesin filenames or directory names. If spacesin executable filenames are desired, use
{spawn_execut abl e, Comrand} instead.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 149

erlang

{spawn_driver, Command}

Workslike{ spawn, Comand}, but demandsthefirst (space-separated) token of the command to be the name
of aloaded driver. If no driver with that nameisloaded, abadar g error israised.

{spawn_execut abl e, Fil eNane}

Workslike{ spawn, Fi | eNane}, but only runs external executables. Fi | eNane initswholeis used asthe
name of the executable, including any spaces. If arguments are to be passed, the Por t Setti ngs ar gs and
ar g0 can be used.

The shell isusually not invoked to start the program, it is executed directly. PATH (or equivalent) is not searched.
To find aprogram in PATHto execute, use os: fi nd_execut abl e/ 1.

Only if ashell script or . bat file is executed, the appropriate command interpreter is invoked implicitly, but
thereis still no command-argument expansion or implicit PATH search.

If Fi | eName cannot be run, an error exception is raised, with the POSIX error code as the reason. The error
reason can differ between OSs. Typically the error enoent israised when an attempt is made to run a program
that is not found and eacces israised when the specified file is not executable.

{fd, In, out}

Allows an Erlang process to access any currently opened file descriptors used by Erlang. The file descriptor | n
can be used for standard input, and the file descriptor Qut for standard output. It isonly used for various servers
inthe Erlang OS (shel | and user). Hence, itsuseis limited.

Port Set ti ngs isalist of settings for the port. The valid settings are as follows:

{packet, N}

Messages are preceded by their length, sent in N bytes, with the most significant byte first. The valid values for
Narel, 2, and 4.

stream

Output messages are sent without packet lengths. A user-defined protocol must be used between the Erlang
process and the external object.

{line, L}

Messages are delivered on a per line basis. Each line (delimited by the OS-dependent newline sequence) is
delivered in a single message. The message data format is{ Fl ag, Li ne}, where Fl ag iseol or noeol ,
and Li ne isthe data delivered (without the newline sequence).

L specifiesthe maximum linelength in bytes. Lineslonger than this are delivered in more than one message, with
Fl ag set to noeol for al but the last message. If end of file is encountered anywhere else than immediately
following a newline sequence, the last line is also delivered with FI ag set to noeol . Otherwise lines are
delivered with Fl ag setto eol .

The{packet, N} and{line, L} settingsare mutualy exclusive.
{cd, Dir}

Only valid for { spawn, Command} and { spawn_execut abl e, Fi |l eNane}. The external program
startsusing Di r asitsworking directory. Di r must be a string.

{env, Env}

Only valid for { spawn, Comand}, and { spawn_execut abl e, Fi | eNane}. The environment of the
started process is extended using the environment specificationsin Env.

Env isto be alist of tuples{ Nane, Val }, where Nane isthe name of an environment variable, and Val is
the value it is to have in the spawned port process. Both Nane and Val must be strings. The one exception is
Val beingtheatomf al se (in analogy with os: get env/ 1, which removes the environment variable.

150 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

{args, [string() | binary()]}

Only valid for { spawn_execut abl e, Fil eNane} and specifies arguments to the executable. Each
argument is specified as a separate string and (on Unix) eventually ends up as one element each in the argument
vector. On other platforms, asimilar behavior is mimicked.

The arguments are not expanded by the shell before they are supplied to the executable. Most notably
this means that file wildcard expansion does not occur. To expand wildcards for the arguments, use
filelib:wldcard/ 1. Noticethat evenif theprogramisaUnix shell script, meaning that the shell ultimately
is invoked, wildcard expansion does not occur, and the script is provided with the untouched arguments. On
Windows, wildcard expansion is always up to the program itself, therefore thisis not an issue.

The executable name (also known as ar gv[0]) is not to be specified in this list. The proper executable name
isautomatically used asar gv[0] , where applicable.

If you explicitly want to set the program name in the argument vector, option ar g0 can be used.

{arg0, string() | binary()}

Only valid for { spawn_execut abl e, Fi |l eNanme} and explicitly specifies the program name argument
when running an executable. This can in some circumstances, on some OSs, be desirable. How the program
responds to thisis highly system-dependent and no specific effect is guaranteed.

exit_status

Only valid for {spawn, Conmand}, where Conmand refers to an external program, and for
{spawn_execut abl e, Fil eNane}.

When the external process connected to the port exits, a message of the form {Port,
{exit_status, Status}} issenttothe connected process, where St at us isthe exit status of the external
process. If the program aborts on Unix, the same convention is used as the shells do (that is, 128+signal).

If option eof isspecified also, the messageseof and exi t _st at us appear in an unspecified order.
If the port program closesits st dout without exiting, option exi t _st at us does not work.
use_stdio

Only validfor{ spawn, Comand} and{ spawn_execut abl e, Fi | eNane}.Italowsthestandardinput
and output (file descriptors 0 and 1) of the spawned (Unix) process for communication with Erlang.

nouse_stdio
The opposite of use_st di o. It usesfile descriptors 3 and 4 for communication with Erlang.
stderr_to_stdout

Affects ports to external programs. The executed program gets its standard error file redirected to its standard
output file. st derr _t o_st dout and nouse_st di o are mutually exclusive.

over |l apped_io

Affects ports to external programs on Windows only. The standard input and standard output handles of the port
program are, if this option is supplied, opened with flag FI LE_FLAG_OVERLAPPED, so that the port program
can (and must) do overlapped 1/O on its standard handles. Thisis not normally the case for simple port programs,
but an option of value for the experienced Windows programmer. On all other platforms, thisoption issilently
discarded.

The port can only be used for input.

out
The port can only be used for output.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 151

erlang

bi nary
All 1/O from the port is binary data objects as opposed to lists of bytes.
eof

The port is not closed at the end of the file and does not produce an exit signal. Instead, it remains open and a
{Port, eof} messageis sent to the process holding the port.

hi de

When running on Windows, suppresses creation of a new console window when spawning the port program.
(This option has no effect on other platforms.)

{paral l el ism Bool ean}

Sets scheduler hint for port parallelism. If settot r ue, the virtual machine schedules port tasks; when doing so, it
improves parallelism in the system. If settof al se, the virtual machinetriesto perform port tasksimmediately,
improving latency at the expense of parallelism. The default can be set at system startup by passing command-
lineargument +spp toerl (1).

Default isst r eamfor all port typesand use_st di o for spawned ports.

Failure: if the port cannot be opened, the exit reasonisbadar g, syst em | i m t , or the POSIX error code that most
closely describes the error, or ei nval if no POSIX code is appropriate:

badar g
Bad input argumentsto open_port.
system|limt
All available portsin the Erlang emulator arein use.
enomem
Not enough memory to create the port.
eagain
No more available OS processes.
enanet ool ong
Too long external command.
enfile
No more available file descriptors (for the OS process that the Erlang emulator runsin).
enfile
Full file table (for the entire OS).
eacces
Conmand specified in{ spawn_execut abl e, Comuand} does not point out an executablefile.
enoent
Fi | eName specifiedin{spawn_execut abl e, Fi | eNanme} does not point out an existing file.

During use of aport opened using { spawn, Nane},{spawn_driver, Nane},or{spawn_execut abl e,
Nane}, errors arising when sending messages to it are reported to the owning process using signals of the form
{"EXIT, Port, PosixCode}.Forthepossiblevaluesof Posi xCode, seefil e(3).

The maximum number of ports that can be open at the same time can be configured by passing command-line flag
+Qtoerl (1).

erlang:phash(Term, Range) -> Hash
Types:
Term = term()
Range = Hash = integer() >=1
Range = 1..2/32, Hash = 1..Range

152 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture and
ERTSversion (the BIF wasintroduced in ERTS 4.9.1.1). The function returns ahash value for Ter mwithin the range
1. . Range. The maximum value for Range is 2"32.

This BIF can be used instead of the old deprecated BIF er | ang: hash/ 2, asit calculates better hashes for all data
types, but consider using phash2/ 1, 2 instead.

erlang:phash2(Term) -> Hash
erlang:phash2(Term, Range) -> Hash
Types:

Term = term()

Range = integer() >=1

1..2°32
Hash = integer() >= 0
0..Range-1

Portable hash function that gives the same hash for the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 5.2). The function returns a hash value for Ter mwithin the range
0. . Range- 1. The maximum value for Range is 232. When without argument Range, a value in the range
0..2727-1 is returned.

This BIF is dways to be used for hashing terms. It distributes small integers better than phash/ 2, and it is faster
for bignums and binaries.

Noticethat therange 0. . Range- 1 isdifferent from the range of phash/ 2, whichis1. . Range.

pid to list(Pid) -> string()
Types:
Pid = pid()
Returns a string corresponding to the text representation of Pi d.

Warning:
This BIF isintended for debugging and is not to be used in application programs.

erlang:port call(Port, Operation, Data) -> term()
Types.

Port = port() | atom()

Operation = integer()

Data = term()

Performs a synchronous call to a port. The meaning of Oper at i on and Dat a depends on the port, that is, on the
port driver. Not all port drivers support this feature.

Port isaport identifier, referring to adriver.

Oper at i on isaninteger, which is passed on to the driver.

Dat a isany Erlang term. This datais converted to binary term format and sent to the port.
Returns aterm from the driver. The meaning of the returned data also depends on the port driver.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 153

erlang

Failures:

badar g
If Por t isnot an identifier of an open port, or the registered name of an open port. If the calling process
was previoudly linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g

If Oper at i on does not fit in a 32-bit integer.
badar g

If the port driver does not support synchronous control operations.
badar g

If the port driver so decides for any reason (probably something wrong with Oper at i on or Dat a).

port close(Port) -> true
Types:
Port = port() | atom()

Closes an open port. Roughly thesameasPort | {sel f(), cl ose} exceptfortheerror behavior (see below),
being synchronous, and that the port does not reply with { Port, cl osed}. Any process can close a port with
port _cl ose/ 1, notonly the port owner (the connected process). If the calling processislinked to the port identified
by Por t , the exit signal from the port is guaranteed to be delivered before port _cl ose/ 1 returns.

For comparison: Port ! {sel f(), cl ose} onlyfailswithbadar gif Port doesnot refer to aport or aprocess.
If Port isaclosed port, nothing happens. If Por t isan open port and the calling process is the port owner, the port
replieswith{ Port, cl osed} when all buffers have been flushed and the port really closes. If the calling process
is not the port owner, the port owner failswith badsi g.

Notice that any processcan closeaportusingPort ! {Port Oamner, cl ose} asifititself wasthe port owner,
but the reply always goes to the port owner.

Asfrom Erlang/OTPR16, Port ! {Port Omer, cl ose} istruly asynchronous. Notice that this operation has
always been documented as an asynchronous operation, while the underlying implementation has been synchronous.
port _cl ose/ 1 ishowever still fully synchronous because of its error behavior.

Failure: badar g if Port isnot an identifier of an open port, or the registered name of an open port. If the calling
process was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

port command(Port, Data) -> true

Types:
Port = port() | atom()
Data = iodata()

Sendsdatato aport. SameasPort ! {PortOmner, {conmand, Data}} exceptfor theerror behavior and
being synchronous (see below). Any process can send datato aport withport _comand/ 2, not only the port owner
(the connected process).

For comparison: Port ! {Port Ower, {conmand, Data}} onlyfailswithbadar g if Port doesnot refer
to aport or aprocess. If Port isaclosed port, the data message disappears without a sound. If Por t is open and
the calling process is not the port owner, the port owner failswith badsi g. The port owner failswith badsi g aso
if Dat aisaninvalid /O list.

Notice that any process can send to aport using Port ! {Port Ower, {conmand, Data}} asifititself
was the port owner.

If the port is busy, the calling process is suspended until the port is not busy any more.

154 | Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS)

erlang

Asfrom Erlang/OTPR16, Port ! {Port Omer, {command, Data}} istruly asynchronous. Noticethat this
operation has always been documented as an asynchronous operation, while the underlying implementation has been
synchronous. por t _commrand/ 2 ishowever still fully synchronous because of its error behavior.

Failures:
badar g

If Port isnot an identifier of an open port, or the registered name of an open port. If the calling process was
previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be delivered
before thisbadar g exception occurs.

badar g
If Dat aisaninvalid I/O list.

port command(Port, Data, OptionList) -> boolean()

Types:
Port = port() | atom()
Data = iodatal()

Option = force | nosuspend
OptionList = [Option]
Sendsdatato aport. port _command(Port, Data, []) equalsport_ comand(Port, Data).
If the port command is aborted, f al se isreturned, otherwiset r ue.
If the port is busy, the calling process is suspended until the port is not busy anymore.
Options:

force
The calling process is not suspended if the port is busy, instead the port command is forced through. The call
failswith anot sup exception if the driver of the port does not support this. For more information, see driver
flag ! [CDATAl ERL_DRV_FLAG SOFT_BUSY]] .

nosuspend
The calling processis not suspended if the port is busy, instead the port command is aborted and f al se is
returned.

Note:

More options can be added in a future release.

Failures:

badar g
If Por t isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previoudly linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g

If Dat a isaninvalid I/O list.
badar g

If Opti onLi st isaninvalid option list.
not sup

If option f or ce has been passed, but the driver of the port does not allow forcing through a busy port.

Ericsson AB. All Rights Reserved.: Erlang Run-Time System Application (ERTS) | 155

erlang

port connect(Port, Pid) -> true

Types.
Port = port() | atom()
Pid = pid()

Sets the port owner (the connected port) to Pi d. Roughly thesameasPort ! {Owner, {connect, Pid}}
except for the following:

* Theerror behavior differs, see below.

e Theport doesnot reply with { Por t , connect ed}.

e port_connect/ 1 issynchronous, see below.

* Thenew port owner gets linked to the port.

The old port owner stays linked to the port and must call unl i nk(Por t) if thisisnot desired. Any process can set
the port owner to be any processwith port _connect/ 2.

For comparison: Port ! {self(), {connect, Pid}} onlyfalswithbadar g if Port doesnot refer toa
port or a process. If Port isaclosed port, nothing happens. If Por t isan open port and the calling process is the
port owner, the port replieswith{ Port , connect ed} tothe old port owner. Notice that the old port owner is still
linked to the port, while the new isnot. If Por t isan open port and the calling processis not the port owner, the port
owner failswith badsi g. The port owner failswith badsi g alsoif Pi d isnot an existing local process identifier.

Notice that any process can set the port owner using Port | {Port Omer, {connect, Pid}} asifititself
was the port owner, but the reply always goes to the port owner.

Asfrom Erlang/OTPR16, Port ! {Port Omer, {connect, Pid}} istruly asynchronous. Notice that this
operation has always been documented as an asynchronous operation, while the underlying implementation has been
synchronous. port _connect / 2 ishowever still fully synchronous because of its error behavior.

Failures:

badar g
If Por t isnot anidentifier of an open port, or the registered name of an open port. If the calling process
was previously linked to the closed port, identified by Por t , the exit signal from the port is guaranteed to be
delivered before thisbadar g exception occurs.

badar g
If the processidentified by Pi d isnot an existing local process.

port control(Port, Operation, Data) -> iodata() | binary()
Types:

Port = port() | atom()

Operation = integer()

Data = iodata()

Performs a synchronous control operation on a port. The meaning of Qper at i on and Dat a depends on the port,
that is, on the port driver. Not al port drivers support this control feature.

Returns alist of integersin the range 0..255, or a binary, depending on the port driver. The meaning of the returned
data also depends on the port driver.

Failures:

badar g

If Por t isnot an open port or the registered name of an o