ERLANG

Mnesia

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.
Mnesia 4.16

July 10, 2019

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

July 10, 2019

1.1 Introduction

1 Mnesia User's Guide

The Mnesia application is a distributed Database Management System (DBMYS), appropriate for telecommunications
applications and other Erlang applications, which require continuous operation and exhibit soft real-time properties.

1.1 Introduction
The Mnesia application provides a heavy duty real-time distributed database.

1.1.1 Scope

This User's Guide describes how to build Mnesia database applications, and how to integrate and use the Mnesia
database management system with OTP. Programming constructs are described, and numerous programming examples
areincluded to illustrate the use of Mnesia

This User's Guide is organized as follows:

* Mnesia provides an introduction to Mnesia.

e Getting Sarted introduces Mnesia with an example database. Examples are included how to start an Erlang
session, specify a Mnesia database directory, initialize a database schema, start Mnesia, and create tables. Initial
prototyping of record definitionsis also discussed.

* Build a Mnesia Database more formally describes the steps introduced in the previous section, namely the
Mnesia functions that define a database schema, start Mnesia, and create the required tables.

« Transactions and Other Access Contexts describes the transactions properties that make Mnesiainto a fault
tolerant, real-time distributed database management system. This section also describes the concept of locking
to ensure consistency in tables, and "dirty operations”, or short cuts, which bypass the transaction system to
improve speed and reduce overheads.

» Miscellaneous Mnesia Features describes features that enable the construction of more complex database
applications. These features include indexing, checkpoints, distribution and fault tolerance, disc-less nodes,
replication manipulation, local content tables, concurrency, and object-based programming in Mnesia.

* Mnesia System Information describes the files contained in the Mnesia database directory, database
configuration data, core and table dumps, as well as the important subject of backup, fall-back, and disaster
recovery principles.

e Combine Mnesia with SNMP is a short section that outlines Mnesiaintegrated with SNMP.

« Appendix A: Backup Callback Interfaceis a program listing of the default implementation of this facility.

e Appendix B: Activity Access Callback Interface is a program outlining one possible implementation of this
facility.

* Appendix C: Fragmented Table Hashing Callback Interface is a program outlining one possible implementation
of thisfacility.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, system development principles, and
database management systems.

Ericsson AB. All Rights Reserved.: Mnesia | 1

1.2 Mnesia

1.2 Mnesia

The management of data in telecommunications system has many aspects, thereof some, but not all, are addressed by
traditional commercial Database Management Systems (DBMSs). In particular the high level of fault tolerancethat is
required in many nonstop systems, combined with requirements on the DBM Sto run in the same address space asthe
application, have led us to implement anew DBMS, called Mnesia.

Mnesia is implemented in, and tightly connected to Erlang. It provides the functionality that is necessary for the
implementation of fault tolerant telecommunications systems.

Mnesia is a multiuser distributed DBMS specialy made for industrial telecommunications applications written in
Erlang, whichis also the intended target language. Mnesiatriesto address all the data management issues required for
typical telecommunications systems. It has a number of features that are not normally found in traditional databases.

In telecommunications applications, there are different needs from the features provided by traditional DBMSs. The
applications now implemented in Erlang need a mixture of a broad range of features, which generally are not satisfied
by traditional DBMSs. Mnesiais designed with regquirements like the following in mind:

* Fast red-time key/value lookup

e Complicated non-real-time queries mainly for operation and maintenance

» Distributed data because of distributed applications

e High fault tolerance

e Dynamic reconfiguration

» Complex objects

Mnesiais designed with the typical data management problems of telecommunications applicationsin mind. This sets
Mnesia apart from most other DBMS. Hence Mnesia combines many concepts found in traditional databases such
as transactions and queries with concepts found in data management systems for telecommunications applications,
for example:

» Fast real-time operations

« Configurable degree of fault tolerance (by replication)

» Theahility to reconfigure the system without stopping or suspending it.

Mnesia is also interesting because of its tight coupling to Erlang, thus amost turning Erlang into a database
programming language. This has many benefits, the foremost is that the impedance mismatch between the data format

used by the DBMS and the data format used by the programming language, which is used to manipulate the data,
completely disappears.

1.2.1 Mnesia Database Management System (DBMS)

Features
Mnesia contains the following features that combine to produce a fault-tolerant, distributed DBM S written in Erlang:

» Database schema can be dynamically reconfigured at runtime.
e Tables can be declared to have properties such as location, replication, and persistence.

» Tables can be moved or replicated to several nodes to improve fault tolerance. The rest of the system can still
access the tables to read, write, and delete records.

» Tablelocations are transparent to the programmer. Programs address table names and the system itself keeps
track of table locations.

» Database transactions can be distributed, and many functions can be called within one transaction.

* Several transactions can run concurrently, and their execution is fully synchronized by the DBMS. Mnesia
ensures that no two processes manipul ate data simultaneously.

2 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

« Transactions can be assigned the property of being executed on al nodesin the system, or on none.
Transactions can a so be bypassed in favor of running "dirty operations', which reduce overheads and run fast.

Details of these features are described in the following sections.

Add-On Application

Query List Comprehension (QLC) can be used with Mnesia to produce specialized functions that enhance the

operational ability of Mnesia. QL C hasits own documentation as part of the OTP documentation set. The main features

of QLC when used with Mnesia are as follows:

* QLC can optimize the query compiler for the Mnesia DBMS, essentially making the DBM S more efficient.

e QLC can be used as a database programming language for Mnesia. It includes a notation called "list
comprehensions' and can be used to make complex database queries over a set of tables.

For information about QL C, see the glc manual pagein STDLIB.
When to Use Mnesia

Use Mnesiawith the following types of applications:

* Applicationsthat need to replicate data.

e Applications that perform complicated searches on data.

* Applications that need to use atomic transactions to update several records simultaneously.
* Applicationsthat use soft real-time characteristics.

Mnesiais not as appropriate with the following types of applications:

e Programsthat process plain text or binary datafiles.

« Applications that merely need alook-up dictionary that can be stored to disc. Those applications use the
standard library module det s, which is adisc-based version of the module et s. For information about det s,
see the dets manual pagein STDLIB.

» Applications that need disc logging facilities. Those applications can use the moduledi sk_| og by preference.
For information about di sk_| 0g, see the disk_log manual page in Kernel.

e Hard real-time systems.

1.3 Getting Started

This section introduces Vnesi a with an example database. This example is referenced in the following sections,
wherethe exampleismodified toillustrate various program constructs. This sectionillustratesthe following mandatory
procedures through examples:

» Starting the Erlang session.

* Specifying the VMhesi a directory where the database is to be stored.

» Initializing a new database schemawith an attribute that specifies on which node, or nodes, that database is to
operate.

e Starting Mnesi a.
» Creating and populating the database tables.

1.3.1 Starting Mnesia for the First Time

This section provides a simplified demonstration of a Vhesi a system startup. The dialogue from the Erlang shell
isasfollows:

Ericsson AB. All Rights Reserved.: Mnesia | 3

1.3 Getting Started

unix> erl -mnesia dir '"/tmp/funky"'
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)

1>

1> mnesia:create schema([node()]).

ok

2> mnesia:start().

ok

3> mnesia:create table(funky, []1).

{atomic, ok}

4> mnesia:info().

---> Processes holding locks <---

---> Processes waiting for locks <---

---> Pending (remote) transactions <---

---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

funky : with 0 records occupying 269 words of mem
schema : with 2 records occupying 353 words of mem
===> System info in version "1.0", debug level = none <===
opt disc. Directory "/tmp/funky" is used.

use fall-back at restart = false

running db nodes = [nonode@nohost]
stopped db nodes = []

remote =[]

ram_copies = [funky]
disc_copies = [schema]

disc_only copies []

[{nonode@nohost,disc copies}] = [schema]
[{nonode@nohost, ram copies}] = [funky]

1 transactions committed, O aborted, 0 restarted, 1 logged to disc
0 held locks, O in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

In this example, the following actions are performed:

e Step 1: The Erlang system is started from the UNIX prompt with aflag - mesi a dir [trmp/ funky"",

which indicates in which directory to store the data.

e Step 2: A new empty schemaisinitialized on the local node by evaluating mnesia: create_schema([node()]).
The schema contains information about the database in general. Thisis explained in detail later.

» Step 3: The DBMSis started by evaluating mnesia: start().

e Step 4: Afirsttableis created, called f unky, by evauating the expression
mmesi a: create_tabl e(funky, []).Thetableisgiven default properties.

* Step 5: mnesiaiinfo() is evaluated to display information on the terminal about the status of the database.

1.3.2 Example

A Mnesi a database is organized as a set of tables. Each table is populated with instances (Erlang records). A table
has also a number of properties, such as location and persistence.

Database
This example shows how to create a database called Conpany and the relationships shown in the following diagram:

Figure 3.1: Company Entity-Relation Diagram

4 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

The database model is as follows:

* Therearethree entities: department, employee, and project.
» There are three relationships between these entities:

* A department is managed by an employee, hence the nanager relationship.
e Anemployee works at a department, hencethe at _dep relationship.
« Each employee works on a number of projects, hencethei n_pr oj relationship.

Defining Structure and Content

First the record definitions are entered into atext file named conpany. hr | . Thisfile definesthe following structure
for the exampl e database:

-record(employee, {emp no,
name,
salary,
sex,
phone,
room no}).

-record(dept, {id,
name}).

-record(project, {name,
number}).

-record(manager, {emp,
dept}).

-record(at_dep, {emp,
dept id}).

-record(in _proj, {emp,
proj_name}).

The structure defines six tablesin the database. In Mhesi a, the function mnesia: create_table(Name, ArgList) creates
tables. Nane is the table name.

The current version of Mhesi a does not require that the name of the table is the same as the record name, see
Record Names versus Table Names..

For example, the table for employees is created with the function mmesi a: cr eat e_t abl e(enpl oyee,
[{attributes, record_info(fields, enployee)}]).Thetablenameenpl oyee matchesthe name
for records specifiedin Ar gLi st . Theexpressionr ecord_i nf o(fi el ds, Recor dNane) isprocessed by the
Erlang preprocessor and evaluatesto alist containing the names of the different fields for arecord.

Program

The following shell interaction starts Mnesi a and initializes the schema for the Conpany database:

Ericsson AB. All Rights Reserved.: Mnesia | 5

1.3 Getting

Started

)
“

E

erl -mnesia dir '"/ldisc/scratch/Mnesia.Company
rlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)

1> mnesia:create schema([node()]).
ok

2> mnesia:start().

ok

The following program module creates and popul ates previously defined tables:

-include 1
-include("

init() ->

mnesia:

mnesia:

mnesia:

mnesia:

mnesia:

mnesia:

ib("stdlib/include/qlc.hrl").
company.hrl").

create table(employee,
[{attributes, record info(fields, employee)}]),
create table(dept,
[{attributes, record info(fields, dept)}]),
create table(project,
[{attributes, record info(fields, project)}]),
create table(manager, [{type, bag},
{attributes, record info(fields, manager)}l),
create table(at dep,
[{attributes, record info(fields, at dep)}]),
create table(in proj, [{type, bag},
{attributes, record info(fields, in proj)}1).

Program Explained

The following commands and functions are used to initiate the Conpany database:

e %erl

-mesia dir

/1 di sc/ scrat ch/ Mhesi a. Conpany"' . ThisisaUNIX command-

line entry that starts the Erlang system. Theflag - mmesi a dir Di r specifiesthe location of the database

directory

. The system responds and waits for further input with the prompt 1>.

* mnesia:create_schema([node()]). This function has the format

mesi a

:create_schema(Di scNodeLi st) and initiates a new schema. In this example, a non-

distributed system using only one node is created. Schemas are fully explained in Define a Schema.
* mnesia:start(). Thisfunction starts Mhesi a and isfully explained in Start Mnesia.

Continuing the dialogue with the Erlang shell produces the following:

6 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

3> company:init().

{atomic, ok}

4> mnesia:info().

---> Processes holding locks <---

---> Processes waiting for locks <---

---> Pending (remote) transactions <---

---> Active (local) transactions <---

---> Uncertain transactions <---

---> Active tables <---

in _proj : with 0 records occuping 269 words of mem

at dep : with 0@ records occuping 269 words of mem
manager : with 0 records occuping 269 words of mem
project : with 0 records occuping 269 words of mem
dept : with 0 records occuping 269 words of mem
employee : with 0 records occuping 269 words of mem

schema : with 7 records occuping 571 words of mem

===> System info in version "1.0", debug level = none <===

opt disc. Directory "/ldisc/scratch/Mnesia.Company" is used.

use fall-back at restart = false

running db nodes [nonode@nohost]

stopped db nodes [1

remote [

ram_copies =
[at dep,dept,employee,in proj,manager,project]

disc_copies = [schema]

disc_only copies = []

[{nonode@nohost,disc copies}] = [schema]

[{nonode@nohost, ram copies}] =
[employee,dept,project,manager,at dep,in projl

6 transactions committed, 0 aborted, 0 restarted, 6 logged to disc

0 held locks, O in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

A set of tablesis created. The function mnesia;create table(Name, ArgList) creates the required database tables. The
options available with Ar gLi st are explained in Create New Tables.

The function conpany: i ni t / O creates the tables. Two tables are of type bag. Thisisthe manager relation as
well thei n_proj relation. Thisis interpreted as. an employee can be manager over several departments, and an
employee can participate in several projects. However, theat _dep relationisset , asan employee can only work in
one department. In this data model, there are examples of relations that are 1-to-1 (set) and 1-to-many (bag).

mnesia:info() now indicates that a database has seven local tables, where six are the user-defined tables and oneisthe
schema. Six transactions have been committed, as six successful transactions were run when creating the tables.

To write a function that inserts an employee record into the database, there must be an at _dep record and a set of
i n_proj recordsinserted. Examine the following code used to compl ete this action:

Ericsson AB. All Rights Reserved.: Mnesia | 7

1.3 Getting Started

insert _emp(Emp, DeptId, ProjNames) ->

Ename = Emp#employee.name,

Fun = fun() ->
mnesia:write(Emp),
AtDep = #at dep{emp = Ename, dept id = DeptId},
mnesia:write(AtDep),
mk _projs(Ename, ProjNames)

end,
mnesia:transaction(Fun).

mk _projs(Ename, [ProjName|Tail]) ->
mnesia:write(#in proj{emp = Ename, proj name = ProjName}),
mk _projs(Ename, Tail);

mk_projs(_, []1) -> ok.

e Theinsert enp/ 3 argumentsare asfollows:

e Enp isan employee record.
e Dept | distheidentity of the department where the employee works.
* Proj Nanes isalist of the names of the projects where the employee works.

Thefunctioni nsert _enp/ 3 creates a Functional Object (Fun). Fun is passed as a single argument to the function
mnesia:transaction(Fun). This means that Fun is run as a transaction with the following properties:

* A Fun either succeeds or fails.

* Code that manipulates the same data records can be run concurrently without the different processes interfering
with each other.

The function can be used as follows:

Emp = #employee{emp no= 104732,
name = klacke,
salary = 7,
sex = male,
phone = 98108,
room_no = {221, 015}},
insert emp(Emp, 'B/SFR', [Erlang, mnesia, otp]).

For information about Funs, see "Fun Expressions' in section Er| ang Ref erence Manual in System
Documentation..

Initial Database Content

After the insertion of the employee named k| acke, the database has the following records:

emp_no name saary Sex phone room_no

104732 klacke 7 male 98108 {221, 015}

Table 3.1: employee Database Record

Thisenpl oyee record hasthe Erlang record/tuplerepresentation { enpl oyee, 104732, kl acke, 7, mal e,
98108, {221, 015}}.

8 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

emp dept_name

klacke B/SFR

Table 3.2: at_dep Database Record

Thisat _dep record hasthe Erlang tuple representation { at _dep, kl acke, ' B/ SFR }.

emp proj_name
klacke Erlang
klacke otp
klacke mnesia

Table 3.3: in_proj Database Record

This i n_proj record has the Erlang tuple representation {i n_proj, klacke, 'Erlang , klacke,
"otp', klacke, 'mmesia'}.

There is no difference between rows in a table and Vnhesi a records. Both concepts are the same and are used
interchangeably throughout this User's Guide.

A Mesi atableispopulated by Mhesi a records. For example, thetuple{ boss, kl acke, bj arne} isarecord.
The second element in thistupleisthe key. To identify atable uniquely, both the key and the table nameisneeded. The
term Object Identifier (OID) is sometimes used for the arity two tuple { Tab, Key}. The OID for the record { boss,
kl acke, bjarne} isthe arity two tuple { boss, Kkl acke}. The first element of the tuple is the type of the
record and the second element is the key. An OID can lead to zero, one, or more records depending on whether the
tabletypeisset or bag.

Therecord { boss, Kkl acke, bjarne} canalsobeinserted. Thisrecord containsanimplicit reference to another
employee that does not yet exist in the database. Mhesi a does not enforce this.

Adding Records and Relationships to Database
After adding more records to the Conpany database, the result can be the following records:

enpl oyees:

{employee, 104465, "Johnson Torbjorn", 1, male, 99184, {242,038}}.
{employee, 107912, "Carlsson Tuula", 2, female, 94556, {242,056}}.
{employee, 114872, "Dacker Bjarne", 3, male, 99415, {221,035}}.
{employee, 104531, "Nilsson Hans", 3, male, 99495, {222,026}}.
{employee, 104659, "Tornkvist Torbjorn", 2, male, 99514, {222,022}}.
{employee, 104732, "Wikstrom Claes", 2, male, 99586, {221,015}}.
{employee, 117716, "Fedoriw Anna", 1, female, 99143, {221,031}}.
3,

{employee, 115018, "Mattsson Hakan", male, 99251, {203,348}}.

dept:
{dept, 'B/SF', "Open Telecom Platform"}.
{dept, 'B/SFP', "OTP - Product Development"}.
{dept, 'B/SFR', "Computer Science Laboratory"}.
proj ects:

Ericsson AB. All Rights Reserved.: Mnesia | 9

1.3 Getting Started

%% projects

{project, erlang, 1}.
{project, otp, 2}.

{project, beam, 3}.
{project, mnesia, 5}.
{project, wolf, 6}.
{project, documentation, 7}.
{project, www, 8}.

Thesethreetables, enpl oyees, dept , and pr oj ect s, aremade up of real records. Thefollowing database content
isstored in the tables and is built on relationships. These tablesare manager , at _dep,andi n_proj .

manager :

{manager, 104465, 'B/SF'}.
{manager, 104465, 'B/SFP'}.
{manager, 114872, 'B/SFR'}.

at _dep:

{at_dep, 104465, 'B/SF'}.
{at_dep, 107912, 'B/SF'}.
{at dep, 114872, 'B/SFR'}.
{at dep, 104531, 'B/SFR'}.
{at dep, 104659, 'B/SFR'}.
{at dep, 104732, 'B/SFR'}.
{at dep, 117716, 'B/SFP'}.
{at dep, 115018, 'B/SFP'}.

in_proj:

{in_proj, 104465, otp}.
{in_proj, 107912, otp}.
{in_proj, 114872, otp}.
{in_proj, 104531, otp}.
{in_proj, 104531, mnesia}.
{in_proj, 104545, wolf}.
{in_proj, 104659, otp}.
{in_proj, 104659, wolf}.
{in_proj, 104732, otp}.
{in_proj, 104732, mnesia}.
{in _proj, 104732, erlang}.
{in_proj, 117716, otp}.
{in_proj, 117716, documentation}.
{in_proj, 115018, otp}.
{in_proj, 115018, mnesia}.

The room number is an attribute of the employee record. Thisisastructured attribute that consists of atuple. The first
element of the tuple identifies a corridor, and the second element identifies the room in that corridor. An aternativeis
to represent thisasarecord - r ecord(room {corr, no}). instead of an anonymous tuple representation.

The Conpany database is now initialized and contains data.
Writing Queries

Retrieving datafrom DBMS is usually to be done with the functions mnesia;read/3 or mnesia:read/1. The following
function raises the salary:

10 | Ericsson AB. All Rights Reserved.: Mnesia

1.3 Getting Started

raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
mnesia:write(New)

end,
mnesia:transaction(F).

Since it is desired to update the record using the function mnesia:write/1 after the salary has been increased, a write
lock (third argument to r ead) is acquired when the record from the table is read.

To read the values from the table directly is not always possible. It can be needed to search one or more tables to
get the wanted data, and this is done by writing database queries. Queries are always more expensive operations than
direct lookups done with mesi a: r ead. Therefore, avoid queriesin performance-critical code.

Two methods are available for writing database queries:

e Mhesi a functions
« QLC
Using Mnesia Functions

The following function extracts the names of the female employees stored in the database:

mnesia:select(employee, [{#employee{sex = female, name = '$1', ="' '},[1, ['$1'1}]1).

sel ect must always run within an activity, such as a transaction. The following function can be constructed to call
from the shell:

all females() ->

F = fun() ->
Female = #employee{sex = female, name = '$1', ="' "},
mnesia:select(employee, [{Female, []1, ['$1'1}])
end,

mnesia:transaction(F).

Thesel ect expression matches al entriesin table employee with thefield sex setto f emal e.
This function can be called from the shell as follows:

(klacke@gin)1> company:all females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

For adescription of sel ect and its syntax, see Pattern Matching.
Using QLC

This section contains simple introductory examples only. For a full description of the QLC query language, see the
glc manual pagein STDLI B.

Using QL C can be more expensive than using Mhesi a functions directly but offers a nice syntax.

The following function extracts alist of female employees from the database:

Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == femalel),
qlc:e(Q),

Accessing Mhesi a tables from a QL C list comprehension must always be done within a transaction. Consider the
following function:

Ericsson AB. All Rights Reserved.: Mnesia | 11

1.4 Build a Mnesia Database

females() ->

F = fun() ->
Q = qlc:q([E#employee.name || E <- mnesia:table(employee),
E#employee.sex == female]),
qlc:e(Q)
end,

mnesia:transaction(F).

This function can be called from the shell as follows:

(klacke@gin)1> company:females().
{atomic, ["Carlsson Tuula", "Fedoriw Anna"]}

In traditional relational database terminology, this operation is called a selection, followed by a projection.
The previous list comprehension expression contains a number of syntactical elements:

e Thefirst[bracketisread as"build thelist".
e The| | "suchthat" and the arrow <- isread as "taken from".

Hence, the previous list comprehension demonstrates the formation of the list E#enpl oyee. nane such that E is
taken from the table of employees, and attribute sex of each record is equal to theatom f emal e.

The whole list comprehension must be given to the functiongl c: g/ 1.

List comprehensions with low-level Mhesi a functions can be combined in the same transaction. To raise the salary
of al female employees, execute the following:

raise females(Amount) ->
F = fun() ->
Q = qlc:q([E || E <- mnesia:table(employee),
E#employee.sex == femalel),
Fs = gqlc:e(Q),
over write(Fs, Amount)
end,
mnesia:transaction(F).

over write([E|Tail], Amount) ->
Salary = E#employee.salary + Amount,
New = E#employee{salary = Salary},
mnesia:write(New),
1 + over write(Tail, Amount);

over write([],) ->
0.

Thefunctionr ai se_f enmal es/ 1 returnsthetuple{ at om ¢, Nunber},whereNunber isthe number of femae
employees who received a salary increase. If an error occurs, the value { abort ed, Reason} is returned, and
Mhesi a guarantees that the salary is not raised for any employee.

Example:

33>company:raise females(33).
{atomic, 2}

1.4 Build a Mnesia Database

This section describes the basic steps when designing aMnhesi a database and the programming constructs that make
different solutions available to the programmer. The following topics are included:

* Define aschema

12 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

« Datamodel
« Start Mhesi a
¢ Createtables

1.4.1 Define a Schema

Theconfiguration of aMhesi a systemisdescribed in aschema. The schemaisaspecial tablethat includesinformation
such as the table names and the storage type of each table (that is, whether atable is to be stored in RAM, on disc,
or on both, aswell asitslocation).

Unlike data tables, information in schema tables can only be accessed and modified by using the schema-related
functions described in this section.

Mhesi a hasvariousfunctionsfor defining the database schema. Tables can be moved or deleted, and the table layout
can be reconfigured.

Animportant aspect of these functionsisthat the system can access atable whileit isbeing reconfigured. For example,
it is possible to move a table and simultaneously perform write operations to the same table. This feature is essential
for applications that require continuous service.

This section describes the functions available for schema management, all which return either of the following tuples:

« {atomc, ok} ifsuccessful
« {aborted, Reason} if unsuccessful

Schema Functions
The schema functions are as follows:

e mnesia:create_schema(NodeList) initializes a new, empty schema. Thisis a mandatory requirement before
Mhesi a can be started. Mhesi a isatruly distributed DBMS and the schemais a system table that is replicated
on al nodesinaMhesi a system. Thisfunction failsif aschemais already present on any of the nodesin
NodelLi st . The function requires Mhesi a to be stopped on the al db_nodes contained in parameter
NodelLi st . Applications call thisfunction only once, asit is usually aone-time activity to initialize a new
database.

* mnesia:delete_schema(DiscNodeList) erases any old schemas on the nodesin Di scNodelLi st . It also
removes al old tables together with all data. This function requires Vhesi a to be stopped on al db_nodes.

 mnesia:delete table(Tab) permanently deletes al replicas of table Tab.

* mnesia:clear_table(Tab) permanently deletes all entriesin table Tab.

* mnesia:move_table copy(Tab, From, To) moves the copy of table Tab from node Fr omto node To. Thetable
storagetype{t ype} ispreserved, soif aRAM table is moved from one node to ancther, it remains a RAM
table on the new node. Other transactions can still perform read and write operation to the table while it is being
moved.

« mnesia:add table copy(Tab, Node, Type) creates areplica of table Tab at node Node. Argument Type must
be either of the atomsr am copi es, di sc_copi es, ordi sc_onl y_copi es. If you add acopy of the
system table schemma to anode, you want the Mhesi a schemato reside there aswell. This action extends the
set of nodes that comprise this particular Mhesi a system.

« mnesia:del_table copy(Tab, Node) deletes the replica of table Tab at node Node. When the last replica of a
table isremoved, the tableis deleted.

e mnesia:transform_table(Tab, Fun, NewAttributelist, NewRecordName) changestheformat on all recordsintable
Tab. It applies argument Fun to al records in the table. Fun must be a function that takes a record of the old
type, and returns the record of the new type. The table key must not be changed.

Example:

Ericsson AB. All Rights Reserved.: Mnesia | 13

1.4 Build a Mnesia Database

-record(old, {key, val}).
-record(new, {key, val, extra}).

Transformer =
fun(X) when record(X, old) ->
#new{key = X#old.key,
val = X#old.val,
extra = 42}
end,
{atomic, ok} = mnesia:transform table(foo, Transformer,
record info(fields, new),
new),

Argument Fun can also betheatomi gnor e, which indicates that only the metadata about the table is updated.
Useof i gnor e isnot recommended (as it creates inconsistencies between the metadata and the actual data) but
itisincluded as a possibility for the user do to an own (offline) transform.

« change_t abl e_copy_type(Tab, Node, ToType) changesthe storage type of atable. For example,
aRAM tableischangedto adi sc_t abl e at the node specified as Node.

1.4.2 Data Model

The data model employed by Mnesi a is an extended relational data model. Datais organized as a set of tables and
relations between different datarecords can be model ed as more tabl es describing the rel ationshi ps. Each table contains
instances of Erlang records. The records are represented as Erlang tuples.

Each Object Identifier (OID) is made up of atable name and akey. For example, if an employee record is represented
by thetuple{ enpl oyee, 104732, klacke, 7, nmale, 98108, {221, 015}}, thisrecord hasan OID,
whichisthetuple{ enpl oyee, 104732}.

Thus, each table is made up of records, where the first element is a record name and the second element of the table
is akey, which identifies the particular record in that table. The combination of the table name and akey is an arity
two tuple { Tab, Key} caled the OID. For more information about the relationship beween the record name and
the table name, see Record Names versus Table Names.

What makesthe Mhesi a data model an extended relational model is the ability to store arbitrary Erlang termsin the
attribute fields. One attribute value can, for example, be a whole tree of OIDs leading to other terms in other tables.
This type of record is difficult to model in traditional relational DBMSs.

1.4.3 Start Mnesia

Before starting Vhesi a, the following must be done:

e Anempty schemamust beinitialized on all the participating nodes.

* TheErlang system must be started.

* Nodes with disc database schema must be defined and implemented with the function
mnesia: create_schema(Nodel.ist).

When running adistributed system with two or more participating nodes, the function mnesia: start() must be executed
on each participating node. This would typically be part of the boot script in an embedded environment. In a test
environment or an interactive environment, rmesi a: st art () can aso be used either from the Erlang shell or
another program.

Initialize a Schema and Start Mnesia

Let us use the example database Conpany, described in Getting Sarted to illustrate how to run a database on two
separate nodes, calleda@i n andb@keppet . Each of these nodes must haveavhesi a directory and aninitialized
schema before Mhesi a can be started. There are two ways to specify the Mhesi a directory to be used:

14 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

« Specify thelvnesi a directory by providing an application parameter either when starting the Erlang shell or inthe
application script. Previously, the following example was used to create the directory for the Conpany database:

%serl -mnesia dir '"/ldisc/scratch/Mnesia.Company"'

* If no command-lineflag is entered, the Mnesi a directory becomes the current working directory on the node
where the Erlang shell is started.

To start the Conpany database and get it running on the two specified nodes, enter the following commands:
e Onthenodea@i n:

gin %erl -sname a -mnesia dir '"/ldisc/scratch/Mnesia.company

e Onthenodeb@keppet:

skeppet %erl -sname b -mnesia dir '"/ldisc/scratch/Mnesia.company

e Onone of the two nodes:

(a@gin)1l>mnesia:create schema([a@gin, b@skeppet]).

» Thefunction mnesia: start() is called on both nodes.
e Toinitialize the database, execute the following code on one of the two nodes:

dist init() ->
mnesia:create table(employee,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields,
employee)}]),
mnesia:create table(dept,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, dept)}]),
mnesia:create table(project,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, project)}]),
mnesia:create table(manager, [{type, bag},
{ram _copies, [a@gin, b@skeppet]},
{attributes, record info(fields,
manager)}1),
mnesia:create table(at dep,
[{ram copies, [a@gin, b@skeppetl},
{attributes, record info(fields, at dep)}]),
mnesia:create table(in proj,
[{type, bag},
{ram copies, [a@gin, b@skeppet]},
{attributes, record info(fields, in proj)}]).

Asillustrated, the two directories reside on different nodes, because/ | di sc/ scr at ch (the"local” disc) exists on
the two different nodes.

By executing these commands, two Erlang nodes are configured to run the Conrpany database, and therefore, initialize
the database. Thisis required only once when setting up. The next time the system is started, mnesia: start() is called
on both nodes, to initialize the system from disc.

Inasystem of Mnesi a nodes, every nodeisaware of the current location of al tables. Inthisexample, dataisreplicated
on both nodes and functions that manipulate the data in the tables can be executed on either of the two nodes. Code
that manipulate Mhesi a data behaves identically regardless of where the data resides.

Ericsson AB. All Rights Reserved.: Mnesia | 15

1.4 Build a Mnesia Database

The function mnesia:stop() stops Mhesia on the node where the function is executed. The functions
mesi a: start/ 0 and mesi a: st op/ 0 work on the "local" Mnesi a system. No functions start or stop a set
of nodes.

Startup Procedure
Start Mhesi a by calling the following function:

mnesia:start().

This function initiates the DBM S locally.
The choice of configuration alters the location and load order of the tables. The alternatives are as follows:

e Tablesthat are only stored locally are initialized from the local vnesi a directory.

* Replicated tables that reside locally as well as somewhere else are either initiated from disc or by copying the
entire table from the other node, depending on which of the different replicas are the most recent. Mhesi a
determines which of the tables are the most recent.

e Tablesthat reside on remote nodes are available to other nodes as soon as they are loaded.

Tableinitialization is asynchronous. The function call mnesia: start() returns the atom ok and then startsto initialize
the different tables. Depending on the size of the database, this can take some time, and the application programmer
must wait for the tables that the application needs before they can be used. This is achieved by using the function
mnesia:wait_for_tables(TabList, Timeout), which suspends the caller until all tables specified in TabLi st are
properly initiated.

A problem can arise if areplicated table on one node isinitiated, but Mhesi a deduces that another (remote) replica
is more recent than the replica existing on the local node, and the initialization procedure does not proceed. In this
situation, a call to mnesia:wait_for_tables/2, suspends the caller until the remote node has initialized the table from
itslocal disc and the node has copied the table over the network to the local node.

However, this procedure can be time-consuming, the shortcut function mnesia:force load table(Tab) loads all the
tables from disc at a faster rate. The function forces tables to be loaded from disc regardless of the network situation.

Thus, it can be assumed that if an application wants to use tables a and b, the application must perform some action
similar to following before it can use the tables:

case mnesia:wait for tables([a, b], 20000) of

{timeout, RemainingTabs} ->
panic(RemainingTabs);
ok ->
synced
end.

When tables are forcefully loaded from the local disc, all operations that were performed on the replicated table
while the local node was down, and the remote replicawas alive, are lost. This can cause the database to become
inconsi stent.

If the startup procedure fails, the function mnesia:start() returns the cryptic tuple {error, { shut down,
{mesi a_sup,start _link,[normal,[]]}}}. To get more information about the start failure, use
command-line arguments- boot start_sasl asargumenttotheer| script.

16 | Ericsson AB. All Rights Reserved.: Mnesia

1.4 Build a Mnesia Database

1.4.4 Create Tables

The function mnesia:create _table(Name, ArglList) creates tables. When executing this function, it returns one of the
following responses:

{atom c, ok} if thefunction executes successfully
{aborted, Reason} if thefunctionfails

The function arguments are as follows:

Nane isthe name of the table. It is usually the same name as the name of the records that constitute the table.
For details, seer ecor d_nane.

Ar gLi st isalist of { Key, Val ue} tuples. The following arguments are valid:

{type, Type},where Type must be either of the atomsset , or der ed_set, or bag. Defaultisset .
Noticethat currently or der ed_set isnot supported for di sc_onl y_copi es tables.

A tableof typeset oror der ed_set haseither zero or onerecord per key, whereas atable of typebag can
have an arbitrary number of records per key. The key for each record isawaysthefirst attribute of the record.

The following example illustrates the difference between type set and bag:

f() ->
F = fun() ->
mnesia:write({foo, 1, 2}),
mnesia:write({foo, 1, 3}),
mnesia:read({foo, 1})
end,
mnesia:transaction(F).

This transaction returns the list [{f 00, 1, 3}] if table foo is of type set. However, the list
[{foo, 1,2}, {foo, 1, 3}] isreturned if thetableis of type bag.

Mhesi a tables can never contain duplicates of the same record in the same table. Duplicate records have
attributes with the same contents and key.
{di sc_copi es, NodeLi st},whereNodelLi st isalist of thenodeswherethistableistoresideondisc.

Write operations to atable replica of typedi sc_copi es write datato the disc copy and to the RAM copy
of thetable.

It is possible to have a replicated table of type di sc_copi es on one node, and the same table stored as
a different type on another node. Default is[] . This arrangement is desirable if the following operational
characteristics are required:

* Read operations must be fast and performed in RAM.

e All write operations must be written to persistent storage.

A write operation on adi sc_copi es tablereplicais performed in two steps. First the write operation is
appended to alog file, then the actual operation is performed in RAM.

{ram copi es, NodeLi st} ,whereNodeLi st isalist of the nodes where thistableis stored in RAM.
Default is[node()] . If the default value is used to create atable, it is located on the local node only.
Tablereplicasof typer am copi es can be dumped to disc with the function mnesia: dump_tables(TabList).

{di sc_only_copies, Nodeli st}. Thesetablereplicasare stored on disc only and are therefore
slower to access. However, a disc-only replica consumes less memory than atable replica of the other two
storage types.

Ericsson AB. All Rights Reserved.: Mnesia | 17

1.5 Transactions and Other Access Contexts

« {index, AttributeNaneList}, where AttributeNaneLi st isalist of aoms specifying the
names of the attributes Mhesi a isto build and maintain. An index table exists for every element in the list.
Thefirst field of alvhesi a record is the key and thus need no extraindex.

Thefirst field of arecord is the second element of the tuple, which is the representation of the record.

e {snnp, SnnpStruct}.SnnpStruct isdescribedinthe SNMP User's Guide. Basicaly, if thisattribute
ispresentin Ar gLi st of mnesia:create table/2, thetable isimmediately accessible the SNMP.

It is easy to design applications that use SNMP to manipulate and control the system. Mhesi a provides a
direct mapping between the logical tables that make up an SNMP control application and the physical data
that makesup aMhesi a table. The default valueis[] .

e {local _content, true}.Whenan application needs atable whose contentsisto be locally unique
on eachnode, | ocal _cont ent tables can be used. The name of the table is known to all Mhesi a nodes,
but its contents is unique for each node. Access to this type of table must be done locally.

« {attributes, Atonlist} isalistof theattribute namesfor the records that are supposed to popul ate
thetable. Default isthelist [key, val]. Thetable must at least have one extra attribute besides the key.
When accessing single attributesin arecord, it is not recommended to hard code the attribute names as atoms.
Usetheconstruct recor d_i nfo(fi el ds, record_nane) instead.

Theexpressionrecord_i nfo(fi el ds, record_nane) isprocessed by the Erlang preprocessor and
returns a list of the record field names. With the record definition - r ecor d(f oo, {x,vy, z})., the
expressionrecord_i nfo(fi el ds, foo) isexpanded to thelist [x, y, z] . It is therefore possible for
you to provide the attribute names or to use ther ecor d_i nf o/ 2 notation.

It isrecommended to usether ecor d_i nf o/ 2 notation, as it becomes easier to maintain the program and
the program becomes more robust with regards to future record changes.

 {record_nane, Aton} specifiesthecommon name of all records stored in the table. All records stored
in the table must have this name astheir first element. r ecor d_nane defaults to the name of the table. For
more information, see Record Names versus Table Names.

As an example, consider the following record definition:

-record(funky, {x, y}).

The following call would create a table that is replicated on two nodes, has an extra index on attribute y, and is of
typebag.

mnesia:create table(funky, [{disc copies, [N1, N2]}, {index,
[yl}, {type, bag}, {attributes, record info(fields, funky)}]).

Whereas a call to the following default code values would return atable with aRAM copy on the local node, no extra
indexes, and the attributes defaulted to the list [key, val] .

mnesia:create table(stuff, [])

1.5 Transactions and Other Access Contexts

This section describes the Mhesi a transaction system and the transaction properties that make Mhesi a a fault-
tolerant, distributed Database Management System (DBMS).

This section also describes the locking functions, including table locks and sticky locks, aswell asalternative functions
that bypass the transaction system in favor of improved speed and reduced overhead. These functions are called "dirty
operations’. The use of nested transactions is also described. The following topics are included:

18 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

« Transaction properties, which include atomicity, consistency, isolation, and durability
e Locking

e Dirty operations

* Record names versus table names

* Activity concept and various access contexts

* Nested transactions

e Pattern matching

e |teration

1.5.1 Transaction Properties

Transactions are important when designing fault-tolerant, distributed systems. A Mhesi a transaction isamechanism
by which a series of database operations can be executed as one functional block. The functional block that isrunasa
transaction is called a Functional Object (Fun), and this code can read, write, and delete Mhesi a records. The Funis
evaluated as atransaction that either commits or terminates. If atransaction succeedsin executing the Fun, it replicates
the action on all nodes involved, or terminates if an error occurs.

The following example shows a transaction that raises the salary of certain employee numbers:

raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read(employee, Eno, write),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
mnesia:write(New)

end,
mnesia:transaction(F).

The function rai se/ 2 contains a Fun made up of four code lines. This Fun is caled by the statement
mesi a: transacti on(F) and returnsavalue.

TheMnesi a transaction system facilitates the construction of reliable, distributed systems by providing the following
important properties:

« Thetransaction handler ensures that a Fun, which is placed inside a transaction, does not interfere with
operations embedded in other transactions when it executes a series of operations on tables.

« Thetransaction handler ensures that either all operationsin the transaction are performed successfully on all
nodes atomically, or the transaction fails without permanent effect on any node.

e TheMesi a transactions have four important properties, called Atomicity, Consistency, | solation, and
Durability (ACID). These properties are described in the following sections.

Atomicity

Atomicity meansthat database changes that are executed by atransaction take effect on all nodesinvolved, or on none
of the nodes. That is, the transaction either succeeds entirely, or it fails entirely.

Atomicity isimportant when it is needed to write atomically more than one record in the same transaction. Thefunction
r ai se/ 2, shown in the previous example, writes one record only. The function i nsert _enp/ 3, shown in the
program listing in Getting Sarted, writes the record enpl oyee aswell as employeerelations, suchasat _dep and
i n_proj, into the database. If this latter code is run inside a transaction, the transaction handler ensures that the
transaction either succeeds completely, or not at all.

Mhesi a isadistributed DBMS where data can be replicated on several nodes. In many applications, it isimportant
that a series of write operations are performed atomically inside a transaction. The atomicity property ensures that a
transaction takes effect on all nodes, or none.

Ericsson AB. All Rights Reserved.: Mnesia | 19

1.5 Transactions and Other Access Contexts

Consistency

The consistency property ensures that a transaction always leaves the DBMS in a consistent state. For example,
Vhesi a ensures that no inconsistencies occur if Erlang, Mhesi a, or the computer crashes while a write operation
isin progress.

Isolation

Theisolation property ensuresthat transactionsthat execute on different nodesin anetwork, and access and manipul ate
the same datarecords, do not interfere with each other. Theisolation property makesit possibleto execute the function
rai se/ 2 concurrently. A classical problem in concurrency control theory is the "lost update problem”.

Theisolation property isin particular useful if the following circumstances occur where an employee (with employee
number 123) and two processes (P1 and P2) are concurrently trying to raise the salary for the employee:

e Step 1: Theinitial value of the employees salary is, for example, 5. Process P1 starts to execute, reads the
employee record, and adds 2 to the salary.

e Step 2: Process Pl isfor some reason pre-empted and process P2 has the opportunity to run.

e Step 3: Process P2 reads the record, adds 3 to the salary, and finally writes a new employee record with the
salary set to 8.

e Step 4: Process P1 startsto run again and writes its employee record with salary set to 7, thus effectively
overwriting and undoing the work performed by process P2. The update performed by P2 islost.

A transaction system makesit possible to execute two or more processes concurrently that manipul ate the same record.
The programmer does not need to check that the updates are synchronous; thisis overseen by the transaction handler.
All programs accessing the database through the transaction system can be written asif they had sole accessto the data.

Durability

The durability property ensures that changes made to the DBMS by a transaction are permanent. Once a transaction
is committed, al changes made to the database are durable, that is, they are written safely to disc and do not become
corrupted and do not disappear.

The described durability feature does not entirely apply to situations where Vhesi a is configured as a "pure”
primary memory database.

1.5.2 Locking

Different transaction managers employ different strategiesto satisfy theisolation property. Mhesi a usesthe standard
technique of two phase locking. That is, locks are set on records before they are read or written. Mhesi a uses the
following lock types:

» Read locks. A read lock is set on onereplica of arecord before it can be read.

* Writelocks. Whenever atransaction writesto arecord, write locks are first set on all replicas of that particular
record.

» Read tablelocks. If atransaction traverses an entire table in search for arecord that satisfies some particular
property, it is most inefficient to set read locks on the records one by one. It is aso memory consuming, as the
read locks themselves can take up considerable space if the table islarge. Therefore, Mhesi a can set aread
lock on an entire table.

« Writetablelocks. If atransaction writes many records to one table, awrite lock can be set on the entire table.

» Sticky locks. These are write locks that stay in place at a node after the transaction that initiated the lock has
terminated.

20 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

Mhesi a employs a strategy whereby functions, such as mnesia:read/1 acquire the necessary locks dynamically as
the transactions execute. Mhesi a automatically sets and rel eases the locks and the programmer does not need to code
these operations.

Deadlocks can occur when concurrent processes set and release locks on the same records. Mhesi a employsa“wait-
die" strategy to resolve these situations. If Mhesi a suspects that a deadlock can occur when a transaction triesto set
alock, the transaction is forced to release all its locks and sleep for a while. The Fun in the transaction is evaluated
once more.

It is therefore important that the code inside the Fun given to rmesi a: t ransacti on/ 1 is pure. Some strange
results can occur if, for example, messages are sent by the transaction Fun. The following example illustrates this
situation:

bad raise(Eno, Raise) ->

F = fun() ->
[E] = mnesia:read({employee, Eno}),
Salary = E#employee.salary + Raise,
New = E#employee{salary = Salary},
io:format("Trying to write ... ~n", [1),
mnesia:write(New)

end,
mnesia:transaction(F).

This transaction can writethetext " Trying to wite ... " 1000 timesto the termina. However, Mhesi a
guarantees that each transaction will eventually run. Asaresult, Mhesi a is not only deadlock free, but also livelock
free.

The Mhesi a programmer cannot prioritize one particular transaction to execute before other transactions that are
waiting to execute. As aresult, the Mhesi a DBMS transaction system is not suitable for hard real-time applications.
However, Mhesi a contains other features that have real-time properties.

Mhesi a dynamically sets and releases locks as transactions execute. It is therefore dangerous to execute code with
transaction side-effects. In particular, ar ecei ve statement inside a transaction can lead to a situation where the
transaction hangs and never returns, which in turn can cause locks not to release. This situation can bring the whole
system to a standstill, as other transactions that execute in other processes, or on other nodes, are forced to wait for
the defective transaction.

If atransaction terminates abnormally, Mhesi a automatically releases the locks held by the transaction.

Up to now, examples of a number of functions that can be used inside a transaction have been shown. The following
list showsthe simplest Mhesi a functions that work with transactions. Notice that these functions must be embedded
in atransaction. If no enclosing transaction (or other enclosing Mhesi a activity) exists, they al fail.

e mnesia:transaction(Fun) -> {aborted, Reason} [{atomic, Value} executes one transaction with the functional
object Fun asthe single parameter.

* mnesia:read({Tab, Key}) -> transaction abort | RecordList reads all records with Key as key from table
Tab. This function has the same semantics regardless of the location of Tabl e. If thetableis of type bag,
read({Tab, Key}) canreturnan arbitrarily long list. If the tableis of type set , thelist is either of length
oneor[].

* mnesiawread({Tab, Key}) -> transaction abort | RecordList behaves the same way as the previously listed
functionr ead/ 1, except that it acquires awrite lock instead of aread lock. To execute atransaction that
reads arecord, modifies the record, and then writes the record, it is slightly more efficient to set the write
lock immediately. When amnesia:read/1 isissued, followed by amnesia:write/1 the first read lock must be
upgraded to awrite lock when the write operation is executed.

« mnesia:write(Record) -> transaction abort | ok writes arecord into the database. Argument Recor d isan
instance of arecord. The function returns ok, or terminates the transaction if an error occurs.

* mnesia:delete({Tab, Key}) -> transaction abort | ok deletes al records with the given key.

Ericsson AB. All Rights Reserved.: Mnesia | 21

1.5 Transactions and Other Access Contexts

 mnesia:delete_object(Record) -> transaction abort | ok deletes records with the OID Recor d. Usethis
function to delete only some records in atable of type bag.

Sticky Locks

As previously stated, the locking strategy used by Mhesi a is to lock one record when reading a record, and lock
all replicas of arecord when writing a record. However, some applications use Mhesi a mainly for its fault-tolerant
qualities. These applications can be configured with one node doing all the heavy work, and a standby node that is
ready to take over if the main node fails. Such applications can benefit from using sticky locks instead of the normal
locking scheme.

A sticky lock isalock that staysin place at a node, after the transaction that first acquired the lock has terminated. To
illustrate this, assume that the following transaction is executed:

F = fun() ->
mnesia:write(#foo{a = kalle})
end,

mnesia:transaction(F).

Thef oo tableisreplicated on the two nodes N1 and N2.
Normal locking requires the following:

e Onenetwork RPC (two messages) to acquire the write lock
* Three network messages to execute the two-phase commit protocol

If sticky locks are used, the code must first be changed as follows:

F = fun() ->
mnesia:s write(#foo{a = kalle})
end,

mnesia:transaction(F).

This code uses the function s write/1 instead of the function write/1 The function s_wri t e/ 1 sets a sticky lock
instead of anormal lock. If the table is not replicated, sticky locks have no special effect. If thetableis replicated, and
asticky lock is set on node N1, thislock then sticks to node N1. The next timeyou try to set a sticky lock on the same
record at node N1, Mhesi a detects that the lock is aready set and do no network operation to acquire the lock.

Itismore efficient to set alocal lock than it isto set anetworked lock. Sticky locks can therefore benefit an application
that uses areplicated table and perform most of the work on only one of the nodes.

If arecord is stuck at node N1 and you try to set asticky lock for the record on node N2, the record must be unstuck.
This operation is expensive and reduces performance. The unsticking is done automatically if youissues wite/ 1
requests at N2.

Table Locks

Vhesi a supports read and write locks on whole tables as a complement to the normal locks on single records. As
previoudly stated, Mhesi a sets and releases locks automatically, and the programmer does not need to code these
operations. However, transactions that read and write many records in a specific table execute more efficiently if the
transaction is started by setting atable lock on thistable. Thisblocks other concurrent transactions from the table. The
following two functions are used to set explicit table locks for read and write operations:

« mnesia:read lock table(Tab) setsaread lock on table Tab.

« mnesia:write lock table(Tab) sets awrite lock on table Tab.
Alternative syntax for acquisition of tablelocksis asfollows:

mnesia:lock({table, Tab}, read)
mnesia:lock({table, Tab}, write)

22 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

The matching operations in Mhesi a can either lock the entire table or only a single record (when the key is bound
in the pattern).

Global Locks

Write locks are normally acquired on all nodes where a replica of the table resides (and is active). Read locks are
acquired on one node (the local oneif alocal replicaexists).

The function mnesia:lock/2 is intended to support table locks (as mentioned previously) but also for situations when
locks need to be acquired regardless of how tables have been replicated:

mnesia:lock({global, GlobalKey, Nodes}, LockKind)
LockKind ::= read | write | ...

Thelock isacquired on Lockl t emon all nodesin the node list.

1.5.3 Dirty Operations

In many applications, the overhead of processing atransaction can result in aloss of performance. Dirty operation are
short cuts that bypass much of the processing and increase the speed of the transaction.

Dirty operation are often useful, for example, in a datagram routing application where Vhesi a stores the routing
table, and it is time consuming to start a whole transaction every time a packet is received. Mhesi a has therefore
functionsthat mani pulate tableswithout using transactions. Thisalternativeto processing isknown asadirty operation.
However, notice the trade-off in avoiding the overhead of transaction processing:

* Theatomicity and the isolation properties of Mhesi a arelost.

e Theisolation property is compromised, because other Erlang processes, which use transaction to manipulate
the data, do not get the benefit of isolation if dirty operations simultaneously are used to read and write records
from the same table.

The mgjor advantage of dirty operationsisthat they execute much faster than equivalent operations that are processed
as functional objects within atransaction.

Dirty operations are written to disc if they are performed on a table of type di sc_copi es or type
di sc_only_copi es. Mhesi a aso ensures that al replicas of a table are updated if a dirty write operation is
performed on atable.

A dirty operation ensures a certain level of consistency. For example, dirty operations cannot return garbled records.
Hence, each individual read or write operation is performed in an atomic manner.

All dirty functions execute acall toexi t ({ abort ed, Reason}) onfailure. Evenif the following functions are
executed inside a transaction no locks are acquired. The following functions are available:
 mnesia:dirty_read({Tab, Key}) reads one or more records from Mnesi a.

* mnesia:dirty_write(Record) writes the record Recor d.

« mnesia:dirty_delete({Tab, Key}) deletes one or more records with key Key.

« mnesia:dirty_delete object(Record) isthe dirty operation alternative to the function delete_object/1.
 mnesia:dirty first(Tab) returns the "first" key in table Tab.

Recordsin set or bag tables are not sorted. However, there is arecord order that is unknown to the user. This
means that a table can be traversed by this function with the function mnesia: dirty_next/2.

If there are no records in the table, this function returns the atom ' $end_of t abl e' . It is not recommended
to use this atom as the key for any user records.

« mnesia:dirty_next(Tab, Key) returns the "next" key in table Tab. This function makes it possible to traverse a
table and perform some operation on al recordsin the table. When the end of the tableis reached, the special key
" $end_of _t abl e' isreturned. Otherwise, the function returns akey that can be used to read the actual record.

Ericsson AB. All Rights Reserved.: Mnesia | 23

1.5 Transactions and Other Access Contexts

Thebehavior isundefined if any process performsawrite operation on the table while traversing the table with the
function dirty_next/2 Thisis because wr i t e operations on aMhesi a table can lead to internal reorganizations
of thetableitself. Thisisan implementation detail, but remember that the dirty functions are low-level functions.
mnesia:dirty_|last(Tab) works exactly like mnesia:dirty first/1 but returns the last object in Erlang term

order for the table type or der ed_set . For al other table types, mesi a: dirty first/1and

mesi a: dirty_| ast/ 1 aresynonyms.

mnesia:dirty_prev(Tab, Key) works exactly likenmesi a: di rty_next / 2 but returns the previous object in
Erlang term order for the table type or der ed_set . For all other table types, mesi a: di rty_next/ 2 and
mesi a: di rty_prev/ 2 are synonyms.

mnesia:dirty_slot(Tab, Sot) returns the list of records that are associated with S| ot in a table. It can be
used to traverse a table in a manner similar to the function di rty_next/ 2. A table has a number of slots
that range from zero to some unknown upper bound. The function di rty_sl ot/ 2 returns the specia atom
' $end_of tabl e' whentheend of thetableisreached.

The behavior of this function is undefined if the table is written on while being traversed. The function
mnesia:read lock table(Tab) can be used to ensure that no transaction-protected writes are performed during the
iteration.

mnesia: dirty_update _counter ({ Tab,Key}, Val). Counters are positive integers with a value greater than or equal
to zero. Updating a counter adds Val and the counter where Val is apositive or negative integer.

Mhesi a has no special counter records. However, records of the form { TabNane, Key, |nteger} can
be used as counters, and can be persistent.

Transaction-protected updates of counter records are not possible.

There are two significant differences when using this function instead of reading the record, performing the
arithmetic, and writing the record:
e Itismuch more efficient.

* Thefuncion dirty_update _counter/2 is performed as an atomic operation although it is not protected
by atransaction. Therfore no table update islost if two processes simultaneously execute the function
dirty update _counter/ 2.

mnesia:dirty_match_object(Pat) is the dirty equivalent of mnesia: match_object/1.
mnesia:dirty_select(Tab, Pat) isthe dirty equivalent of mnesia: select/2.
mnesia:dirty_index_match_object(Pat, Pos) is the dirty equivalent of mnesia:index_match_object/2.
mnesia:dirty_index_read(Tab, SecondaryKey, Pos) is the dirty equivalent of mnesia:index_read/3.
mnesia:dirty_all_keys(Tab) isthe dirty equivalent of mnesia:all_keys/1.

1.5.4 Record Names versus Table Names

InMnesi a, al recordsin atable must have the same name. All the records must be instances of the same record type.
The record name, however, does not necessarily have to be the same as the table name, although thisis the case in
most of the examplesin this User's Guide. If atable is created without property r ecor d_narne, the following code
ensures that all records in the tables have the same name as the table:

mnesia:create table(subscriber, [])

However, if the table is created with an explicit record name as argument, as shown in the following example,
subscriber records can be stored in both of the tables regardless of the table names:

TabDef = [{record name, subscriber}],
mnesia:create table(my subscriber, TabDef),
mnesia:create table(your subscriber, TabDef).

24 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

To access such tables, simplified access functions (as described earlier) cannot be used. For example, writing a
subscriber record into a table requires the function mnesia:write/3 instead of the simplified functions mnesia:write/1
and mnesia:s write/1:

mnesia:write(subscriber, #subscriber{}, write)
mnesia:write(my subscriber, #subscriber{}, sticky write)
mnesia:write(your subscriber, #subscriber{}, write)

The following simple code illustrates the relationship between the simplified access functions used in most of the
examples and their more flexible counterparts:

Ericsson AB. All Rights Reserved.: Mnesia | 25

1.5 Transactions and Other Access Contexts

mnesia:dirty write(Record) ->
Tab = element(1l, Record),
mnesia:dirty write(Tab, Record).

mnesia:dirty delete({Tab, Key}) ->
mnesia:dirty delete(Tab, Key).

mnesia:dirty delete object(Record) ->
Tab = element(1l, Record),
mnesia:dirty delete object(Tab, Record)

mnesia:dirty update counter({Tab, Key}, Incr) ->
mnesia:dirty update counter(Tab, Key, Incr).

mnesia:dirty read({Tab, Key}) ->
Tab = element(1l, Record),
mnesia:dirty read(Tab, Key).

mnesia:dirty match object(Pattern) ->
Tab = element(1l, Pattern),
mnesia:dirty match object(Tab, Pattern).

mnesia:dirty index match object(Pattern, Attr)
Tab = element (1, Pattern),
mnesia:dirty index match object(Tab, Pattern, Attr).

mnesia:write(Record) ->
Tab = element(1l, Record),
mnesia:write(Tab, Record, write).

mnesia:s write(Record) ->
Tab = element(1l, Record),
mnesia:write(Tab, Record, sticky write).

mnesia:delete({Tab, Key}) ->
mnesia:delete(Tab, Key, write).

mnesia:s delete({Tab, Key}) ->
mnesia:delete(Tab, Key, sticky write).

mnesia:delete object(Record) ->
Tab = element(1l, Record),
mnesia:delete object(Tab, Record, write).

mnesia:s delete object(Record) ->
Tab = element(1l, Record),
mnesia:delete object(Tab, Record, sticky write).

mnesia:read({Tab, Key}) ->
mnesia:read(Tab, Key, read).

mnesia:wread({Tab, Key}) ->
mnesia:read(Tab, Key, write).

mnesia:match object(Pattern) ->
Tab = element(1l, Pattern),
mnesia:match object(Tab, Pattern, read).

mnesia:index match object(Pattern, Attr) ->

Tab = element (1, Pattern),
mnesia:index_match object(Tab, Pattern, Attr, read).

26 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

1.5.5 Activity Concept and Various Access Contexts

As previously described, a Functional Object (Fun) performing table access operations, as listed here, can be passed
on as arguments to the function mnesia:transaction/1,2,3:

* mnesia:write/3 (write/1, s write/1)

* mnesia:delete/3 (mnesia:delete/1, mnesia:s_delete/1)

 mnesia:delete_object/3 (mnesia:delete_object/1, mnesia:s delete object/1)

e mnesia:read/3 (mnesia:read/1, mnesia:wread/1)

e mnesia:match_object/2 (mnesia:match_abject/1)

e mnesia:select/3 (mnesia: select/2)

* mnesia:foldl/3 (mesi a: f ol dl / 4, mnesia:foldr/3, mesi a: f ol dr/ 4)

« mnesia:all_keys/1

e mnesia:index_match_object/4 (mnesia:index_match_object/2)

 mnesiaiindex_read/3

e mnesia:lock/2 (mnesia:read lock table/1l, mnesia:write lock table/l)

 mnesia:table info/2

These functions are performed in a transaction context involving mechanisms, such as locking, logging, replication,

checkpoints, subscriptions, and commit protocols. However, the same function can also be evaluated in other activity
contexts.

The following activity access contexts are currently supported:

e transaction

e sync_transaction
e async_dirty

e sync dirty

e ets

By passing the same"fun" asargument to the function mnesia: sync_transaction(Fun[, Args]) itisperformedin synced
transaction context. Synced transactions wait until all active replicas has committed the transaction (to disc) before
returning from the mesi a: sync_transacti on cal. Using sync_t ransacti on is useful in the following
Cases.

e When an application executes on several nodes and wants to be sure that the update is performed on the remote
nodes before aremote process is spawned or amessage is sent to a remote process.

* When acombining transaction writes with "dirty_reads", that is, the functionsdi rt y_nat ch_obj ect,
dirty read,dirty_index_read,dirty_sel ect,andsoon.

e When an application performs frequent or voluminous updates that can overload Mhesi a on other nodes.

By passing the same "fun" as argument to the function mnesia:async_dirty(Fun [, Args]), it is performed in dirty
context. The function calls are mapped to the corresponding dirty functions. This still involves logging, replication,
and subscriptions but no locking, local transaction storage, or commit protocols are involved. Checkpoint retainers
are updated but updated "dirty". Thus, they are updated asynchronously. The functions wait for the operation to be
performed on one node but not the others. If the table resides locally, no waiting occurs.

By passing the same "fun" as an argument to the function mnesia:sync_dirty(Fun [, Args]), it is performed
in amost the same context as the function mnesia:async_dirty/1,2. The difference is that the operations are
performed synchronously. The caler waits for the updates to be performed on al active replicas. Using
mesi a: sync_di rty/ 1, 2 isuseful in the following cases:

* When an application executes on several nodes and wants to be sure that the update is performed on the remote
nodes before a remote processis spawned or amessage is sent to aremote process.

Ericsson AB. All Rights Reserved.: Mnesia | 27

1.5 Transactions and Other Access Contexts

* When an application performs frequent or voluminous updates that can overload Mhesi a on the nodes.

To check if your codeis executed within atransaction, use the function mnesia:is_transaction/0. It returnst r ue when
called inside a transaction context, otherwisef al se.

Mhesi a tables with storage type RAM copi es and di sc_copi es are implemented internally as et s tables.
Applications can access the these tables directly. Thisis only recommended if all options have been weighed and the
possible outcomes are understood. By passing the earlier mentioned "fun” to the function mnesia:ets(Fun [, Args]), it
is performed but in araw context. The operations are performed directly on the local et s tables, assuming that the
local storagetypeis RAM copi es and that the tableis not replicated on other nodes.

Subscriptions are not triggered and no checkpoints are updated, but this operation is blindingly fast. Disc resident
tables are not to be updated with the et s function, asthe disc is not updated.

The Fun can aso be passed as an argument to the function mnesia: activity/2,3,4, which enables use of customized
activity access callback modules. It can either be obtained directly by stating the module name as argument, or
implicitly by use of configuration parameter access_nodul e. A customized callback modul e can beused for several
purposes, such as providing triggers, integrity constraints, runtime statistics, or virtual tables.

The callback module does not have to access real Mhesi a tables, it is free to do whatever it wants as long as the
callback interfaceisfulfilled.

Appendix B, Activity Access Callback Interface provides the source code, mesi a_f rag. er |, for one aternative
implementation. The context-sensitive function mnesia:table_info/2 can be used to provide virtual information about
atable. One use of thisis to perform QLC queries within an activity context with a customized callback module. By
providing table information about table indexes and other QLC requirements, Q_C can be used as a generic query
language to access virtua tables.

QLC queries can be performed in all these activity contexts (transaction, sync_transacti on,
async_dirty,sync_dirty,andets). Theet s activity only worksif the table has no indexes.

The function mesi a: di rty_* always executes with async_di rty semantics regardless of which activity
access contexts that are started. It can even start contexts without any enclosing activity access context.

1.5.6 Nested Transactions

Transactions can be nested in an arbitrary fashion. A child transaction must run in the same process as its parent.
When a child transaction terminates, the caller of the child transaction gets return value { abort ed, Reason}
and any work performed by the child is erased. If a child transaction commits, the records written by the child are
propagated to the parent.

No locks are released when child transactions terminate. L ocks created by a sequence of nested transactions are kept
until thetopmost transaction terminates. Furthermore, any update performed by anested transaction isonly propagated
in such a manner so that the parent of the nested transaction sees the updates. No final commitment is done until the
top-level transaction terminates. So, although a nested transaction returns{ at om ¢, Val }, if the enclosing parent
transaction terminates, the entire nested operation terminates.

The ability to have nested transaction with identical semantics astop-level transaction makes it easier to write library
functions that manipulate Mhesi a tables.

Consider a function that adds a subscriber to a telephony system:

add subscriber(S) ->
mnesia:transaction(fun() ->
case mnesia:read(..........

28 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

This function needsto be called as a transaction. Assume that you wish to write afunction that both calls the function
add_subscri ber/ 1 andisin itself protected by the context of atransaction. By calling add_subscri ber/ 1
from within another transaction, a nested transaction is created.

Also, different activity access contexts can be mixed while nesting. However, the dirty ones (async_dirty,
sync_dirty, and et s) inherit the transaction semantics if they are called inside a transaction and thus grab locks
and use two or three phase commit.

Example:

add_subscriber(S) ->
mnesia:transaction(fun() ->
%% Transaction context
mnesia:read({some tab, some data}),
mnesia:sync dirty(fun() ->
%% Still in a transaction context.
case mnesia:read(..) ..end), end).
add_subscriber2(S) ->
mnesia:sync dirty(fun() ->
%% In dirty context
mnesia:read({some tab, some data}),
mnesia:transaction(fun() ->
%% In a transaction context.
case mnesia:read(..) ..end), end).

1.5.7 Pattern Matching

When the function mnesia:read/3 cannot be used, Mhesi a provides the programmer with several functions for
matching records against a pattern. The most useful ones are the following:

mnesia:select(Tab, MatchSpecification, LockKind) ->
transaction abort | [ObjectList]
mnesia:select(Tab, MatchSpecification, NObjects, Lock) ->

transaction abort | {[Object],Continuation} | '$end of table'
mnesia:select(Cont) ->
transaction abort | {[Object],Continuation} | '$end of table'

mnesia:match object(Tab, Pattern, LockKind) ->
transaction abort | RecordList

These functions match a Pat t er n against all records in table Tab. In a mnesia:select call, Pat t er n is a part of
Mat chSpeci fi cat i on described in the following. It is not necessarily performed as an exhaustive search of the
entire table. By using indexes and bound values in the key of the pattern, the actual work done by the function can be
condensed into afew hash lookups. Using or der ed_set tables can reduce the search space if the keys are partialy
bound.

The pattern provided to the functions must be a valid record, and the first element of the provided tuple must be the
r ecor d_narne of thetable. The special element’ ' matches any data structure in Erlang (also known as an Erlang
term). The specia elements' $<nunber >' behave as Erlang variables, that is, they match anything, bind the first
occurrence, and match the coming occurrences of that variable against the bound value.

Use function mnesia:table_info(Tab, wild_pattern) to obtain a basic pattern, which matches all recordsin atable, or
use the default value in record creation. Do not make the pattern hard-coded, as this makes the code more vulnerable
to future changes of the record definition.

Example:
Wildpattern = mnesia:table info(employee, wild pattern),
%% 0r use
Wildpattern = #employee{ = ' '},

Ericsson AB. All Rights Reserved.: Mnesia | 29

1.5 Transactions and Other Access Contexts

For the employee table, the wild pattern looks as follows:

{employee, |7|’ 1 |, ' |’] |’ 1 |,| |}-

To constrain the match, it is needed to replace some of the' ' elements. The code for matching out al femae
employees looks as follows:

Pat = #employee{sex = female, ="' '}

F = fun() -> mnesia:match object(Pat) end,
Females = mnesia:transaction(F).

The match function can also be used to check the equality of different attributes. For example, to find all employees
with an employee number equal to their room number:

Pat = #employee{emp no = '$1', room no = '$1', ="' "'},
F = fun() -> mnesia:match object(Pat) end,
0dd = mnesia:transaction(F).

The function mnesia:match_object/3 lacks some important features that mnesia:select/3 have. For example,
mesi a: mat ch_obj ect / 3 can only return the matching records, and it cannot express constraints other than
equality. To find the names of the male employees on the second floor:

MatchHead = #employee{name='$1l', sex=male, room no={'$2', ' '}, =' '},
Guard = [{'>="', '$2', 220},{'<', '$2', 230}1],
Result = '$1°',

mnesia:select(employee, [{MatchHead, Guard, [Result]}])

The function sel ect can be used to add more constraints and create output that cannot be done with
mesi a: mat ch_obj ect/ 3.

The second argument to sel ect is a MatchSpecification. A MatchSpecification is a list
of MatchFuncti ons, where each Mat chFunction consists of a tuple containing {MatchHead,
Mat chCondi ti on, MatchBody}:

* Mat chHead isthe same pattern asused in resi a: mat ch_obj ect / 3 described earlier.

* MatchCondi ti onisalist of extraconstraints applied to each record.

e Mat chBody constructs the return values.

For details about the match specifications, see "Match Specifications in Erlang" in ERTS User's Guide. For more
information, see the ets and dets manual pagesin STDLI B.

The functions select/4 and select/1 are used to get alimited number of results, where Cont i nuat i on gets the next
chunk of results. Mhesi a uses NObj ect s as arecommendation only. Thus, more or less results than specified with
NObj ect s canbereturnedintheresult list, even the empty list can bereturned evenif there are moreresultsto collect.

There is a severe performance penalty in using mesi a: sel ect /[1| 2| 3| 4] after any modifying operation
is done on that table in the same transaction. That is, avoid using mnesia:write/1 or mnesia:delete/1 before
mmesi a: sel ect inthe same transaction.

If the key attribute is bound in a pattern, the match operation is efficient. However, if the key attribute in a pattern
isgivenas' _' or' $1', thewhole enpl oyee table must be searched for records that match. Hence if the tableis
large, this can become a time-consuming operation, but it can be remedied with indexes (see Indexing) if the function
mnesia:match_object is used.

30 | Ericsson AB. All Rights Reserved.: Mnesia

1.5 Transactions and Other Access Contexts

QLC queries can aso be used to search Mhesi a tables. By using the function mnesia:table/[1|2] as the generator
inside a QL C query, you let the query operate on aVhesi a table. Mhesi a-specific optionsto rmesi a: t abl e/ 2
are{l ock, Lock},{n_objects,Integer},and{traverse, Sel Method}:

* | ock specifieswhether Mhesi a isto acquire aread or write lock on the table.

* n_obj ect s specifies how many results are to be returned in each chunk to QLC.

* traver se specifieswhich function Mhesi a isto useto traverse the table. Default sel ect isused, but by
using{traverse, {select, MatchSpecification}} asanoptiontomnesia:table/2 the user can
specify its own view of thetable.

If no options are specified, aread lock is acquired, 100 results are returned in each chunk, and sel ect is used to
traverse thetable, that is:

mnesia:table(Tab) ->
mnesia:table(Tab, [{n objects,100},{lock, read}, {traverse, select}]).

The function mnesia: all_keys(Tab) returns al keysin atable.

1.5.8 lteration

Vhesi a provides the following functions that iterate over all the recordsin atable:

mnesia:foldl
mnesia:foldr
mnesia:foldl
mnesia:foldr

Fun, AccO®, Tab) -> NewAcc | transaction abort
Fun, Acc@®, Tab) -> NewAcc | transaction abort
Fun, Acc@®, Tab, LockType) -> NewAcc | transaction abort
Fun, AccO®, Tab, LockType) -> NewAcc | transaction abort

—_~ o~ —~ —~

These functions iterate over the Vhesi a table Tab and apply the function Fun to each record. Fun takes two
arguments, the first is arecord from the table, and the second is the accumulator. Fun returns a new accumulator.

The first time Fun is applied, AccO is the second argument. The next time Fun is called, the return value from the
previous call is used as the second argument. The term the last call to Fun returnsis the return value of the function
mnesia:foldl/3 or mnesia:foldr/3.

The difference between these functions is the order the table is accessed for or der ed_set tables. For other table
types the functions are equivalent.

LockType specifies what type of lock that is to be acquired for the iteration, default isr ead. If records are written
or deleted during the iteration, awrite lock isto be acquired.

These functions can be used to find records in a table when it is impossible to write constraints for the function
mnesia:match_object/3, or when you want to perform some action on certain records.

For example, finding all the employees who have a salary less than 10 can look as follows:

find low salaries() ->
Constraint =
fun(Emp, Acc) when Emp#employee.salary < 10 ->
[Emp | Accl;
(_, Acc) ->
Acc
end,

Find = fun() -> mnesia:foldl(Constraint, [], employee) end,
mnesia:transaction(Find).

Toraise the salary to 10 for everyone with a salary less than 10 and return the sum of al raises:

Ericsson AB. All Rights Reserved.: Mnesia | 31

1.6 Miscellaneous Mnesia Features

increase low _salaries() ->
Increase =
fun(Emp, Acc) when Emp#employee.salary < 10 ->
01dS = Emp#employee.salary,
ok = mnesia:write(Emp#employee{salary = 10}),
Acc + 10 - 0ldS;
(_, Acc) ->
Acc
end,
IncLow = fun() -> mnesia:foldl(Increase, 0, employee, write) end,
mnesia:transaction(IncLow).

Many nice things can be done with the iterator functions but take some caution about performance and memory use
for large tables.

Call theseiteration functions on nodes that contain areplica of thetable. Each call to the function Fun accessthetable
and if the table resides on another node it generates much unnecessary network traffic.

Mhesi a also provides some functions that make it possible for the user to iterate over the table. The order of the
iteration is unspecified if the tableis not of typeor der ed_set :

mnesia:first(Tab) Key | transaction abort

mnesia:last(Tab) Key | transaction abort

mnesia:next(Tab,Key) -> Key | transaction abort
mnesia:prev(Tab,Key) -> Key | transaction abort
mnesia:snmp get next index(Tab,Index) -> {ok, NextIndex} | endOfTable

->
->

The order of fi rst/l ast and next /prev isonly valid for or der ed_set tables, they are synonyms for other
tables. When the end of the table is reached, the special key ' $end_of _t abl e' isreturned.

If records are written and del eted during the traversal, use the function mnesia: foldl/3 or mnesia: foldr/3withawr i t e
lock. Or the function mnesia:write_lock table/1 when usingf i r st and next .

Writing or deleting in transaction context creates alocal copy of each modified record. Thus, modifying each record
in alarge table uses much memory. Mhesi a compensates for every written or deleted record during the iteration in
a transaction context, which can reduce the performance. If possible, avoid writing or deleting records in the same
transaction before iterating over the table.

Indirty context, thatis,sync_di rty orasync_di rty,themodified recordsare not stored in alocal copy; instead,
each record is updated separately. This generates much network traffic if the table has a replica on another node and
has all the other drawbacks that dirty operations have. Especially for commands mnesia:first/1 and mnesia: next/2, the
same drawbacks as described previoudly for mnesia:dirty first/1 and mnesia:dirty_next/2 applies, that is, no writing
to the table is to be done during iteration.

1.6 Miscellaneous Mnesia Features

The previous sections describe how to get started with Mhesi a and how to build a Mhesi a database. This section
describes the more advanced features available when building a distributed, fault-tolerant Mhesi a database. The
following topics are included:

* Indexing

o Distribution and fault tolerance

e Tablefragmentation

* Local content tables

* Disc-lessnodes

* More about schema management

e Mhesi a event handling

32 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

» Debugging Mhesi a applications

e Concurrent processesin Mhesi a

e Prototyping

e Object-based programming with Mhesi a

1.6.1 Indexing

Data retrieval and matching can be performed efficiently if the key for the record is known. Conversely, if the key
is unknown, al records in a table must be searched. The larger the table, the more time consuming it becomes. To
remedy this problem, Mhesi a indexing capabilities are used to improve data retrieval and matching of records.

The following two functions manipulate indexes on existing tables:

* mnesia:add_table index(Tab, AttributeName) -> {aborted, R} |{atomic, ok}
* mnesia:del_table_index(Tab, AttributeName) -> {aborted, R} |{atomic, ok}
These functions create or delete atable index on afield defined by At t ri but eName. Toillustrate this, add an index
tothetable definition (enpl oyee, {enp_no, nane, sal ary, sex, phone, room no}),whichisthe

example table from the Conpany database. The function that adds an index on element sal ar y can be expressed
asmmesi a: add_t abl e_i ndex(enpl oyee, sal ary).

The indexing capabilities of Mhesi a are used with the following three functions, which retrieve and match records
based on index entries in the database:

* mnesia:index_read(Tab, SecondaryKey, AttributeName) -> transaction abort | RecordList avoids an exhaustive
search of the entire table, by looking up Secondar yKey in the index to find the primary keys.

* mnesiazindex_match_object(Pattern, AttributeName) -> transaction abort | RecordList avoids an exhaustive
search of the entire table, by looking up the secondary key in the index to find the primary keys. The secondary
key isfoundinfield At t ri but eNane of Pat t er n. The secondary key must be bound.

« mnesia:match_object(Pattern) -> transaction abort | RecordList uses indexes to avoid exhaustive search of
the entire table. Unlike the previous functions, this function can use any index as long as the secondary key is
bound.

These functions are further described and exemplified in Pattern Matching.

1.6.2 Distribution and Fault Tolerance

Mhesi a is adistributed, fault-tolerant DBMS. Tables can be replicated on different Erlang nodes in various ways.
The Mhesi a programmer does not need to state where the different tables reside, only the names of the different
tables need to be specified in the program code. Thisis known as "location transparency"” and is an important concept.
In particular:

* A program works regardless of the data location. It makes no difference whether the data resides on the local
node or on aremote node.

Notice that the program runs slower if the datais |ocated on aremote node.

* Thedatabase can be reconfigured, and tables can be moved between nodes. These operations do not affect the
user programs.

It has previously been shown that each table has a number of system attributes, such asi ndex andt ype.

Table attributes are specified when the table is created. For example, the following function creates a table with two
RAM replicas:

mnesia:create table(foo,
[{ram copies, [N1, N2]},
{attributes, record info(fields, foo)}]).

Ericsson AB. All Rights Reserved.: Mnesia | 33

1.6 Miscellaneous Mnesia Features

Tables can a so have the following properties, where each attribute has alist of Erlang nodes asits value:

 ram copi es. The value of the node list is a list of Erlang nodes, and a RAM replica of the table resides on
each nodein thelist.

Noticethat no disc operations are performed when aprogram executes write operationsto these replicas. However,
if permanent RAM replicas are required, the following alternatives are available:

e Thefunction mnesia:dump_tables/1 can be used to dump RAM table replicasto disc.
* Thetablereplicas can be backed up, either from RAM, or from disc if dumped there with this function.

« disc_copi es. Thevaueof theattribute isalist of Erlang nodes, and areplica of the table resides both in
RAM and on disc on each node in the list. Write operations addressed to the table address both the RAM and
the disc copy of the table.

« disc_only_copies. Thevalue of the attribute isalist of Erlang nodes, and areplica of the table resides
only as adisc copy on each nodein the list. The major disadvantage of this type of table replicais the access
speed. The major advantage is that the table does not occupy space in memory.

In addition, table properties can be set and changed. For details, see Define a Schema.

There are basically two reasons for using more than one table replica: fault tolerance and speed. Notice that table
replication provides a solution to both of these system requirements.

If there are two active table replicas, all information is till available if one replica fails. This can be an important
property in many applications. Furthermore, if atable replicaexists at two specific nodes, applications that execute at
either of these nodes can read data from the table without accessing the network. Network operations are considerably
slower and consume more resources than local operations.

It can be advantageousto create table replicasfor adistributed application that reads data often, but writes data seldom,
to achieve fast read operations on the local node. The major disadvantage with replication is the increased time to
write data. If atable has two replicas, every write operation must access both table replicas. Since one of these write
operations must be a network operation, it is considerably more expensive to perform awrite operation to areplicated
table than to anon-replicated table.

1.6.3 Table Fragmentation

Concept

A concept of table fragmentation has been introduced to cope with large tables. Theideaisto split atable into several
manageable fragments. Each fragment is implemented as a first class Mhesi a table and can be replicated, have
indexes, and so on, as any other table. But the tables cannot have | ocal _cont ent or have the snnp connection
activated.

To be able to access arecord in a fragmented table, Mhesi a must determine to which fragment the actual record
belongs. Thisis done by module mesi a_f r ag, which implementsthe mesi a_access callback behavior. It is
recommended to read the documentation about the function mnesia: activity/4 to seehow rmesi a_f r ag can be used
asammesi a_access callback module.

At each record access, mesi a_f r ag first computes a hash value from the record key. Second, the name of the table
fragment is determined from the hash value. Finally the actua table access is performed by the same functions as for
non-fragmented tables. When the key is not known beforehand, all fragments are searched for matching records.

Notice that in or der ed_set tables, the records are ordered per fragment, and the order is undefined in results
returned by sel ect and mat ch_obj ect , aswell asfirst,next,prev andl ast .

The following code illustrates how a Vhesi a table is converted to be a fragmented table and how more fragments
are added later:

34 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

Eshell V4.7.3.3 (abort with ~G)
(a@sam)1> mnesia:start().
ok
(a@sam)2> mnesia:system info(running db nodes).
[b@sam, c@sam, a@sam]
(a@sam)3> Tab = dictionary.
dictionary
(a@sam)4> mnesia:create table(Tab, [{ram copies, [a@sam, b@sam]}]).
{atomic, ok}
(a@sam)5> Write = fun(Keys) -> [mnesia:write({Tab,K,-K}) || K <- Keys], ok end.
#Fun<erl eval>
(a@sam)6> mnesia:activity(sync dirty, Write, [lists:seq(l, 256)], mnesia frag).
ok
(a@sam)7> mnesia:change table frag(Tab, {activate, [1}).
{atomic, ok}
(a@sam)8> mnesia:table info(Tab, frag properties).
[{base table,dictionary},
{foreign key,undefined},
{n_doubles, 0},
{n_fragments,1},
{next n to split,1},
{node pool, [a@sam, b@sam,c@sam]}]
(a@sam)9> Info = fun(Item) -> mnesia:table info(Tab, Item) end.
#Fun<erl eval>
(a@sam)10> Dist = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{c@sam, 0}, {a@sam, 1}, {b@sam, 1}]
(a@sam)11> mnesia:change table frag(Tab, {add frag, Dist}).
{atomic, ok}
(a@sam)12> Dist2 = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{b@sam, 1}, {c@sam,1},{a@sam,2}]
(a@sam)13> mnesia:change table frag(Tab, {add frag, Dist2}).
{atomic, ok}
(a@sam)14> Dist3 = mnesia:activity(sync dirty, Info, [frag dist], mnesia frag).
[{a@sam, 2}, {b@sam, 2}, {c@sam,2}]
(a@sam)15> mnesia:change table frag(Tab, {add frag, Dist3}).
{atomic, ok}
(a@sam) 16> Read = fun(Key) -> mnesia:read({Tab, Key}) end.
#Fun<erl eval>
(a@sam)17> mnesia:activity(transaction, Read, [12], mnesia frag).
[{dictionary,12,-12}]
(a@sam)18> mnesia:activity(sync dirty, Info, [frag size], mnesia frag).
[{dictionary, 64},
{dictionary frag2,64},
{dictionary frag3,64},
{dictionary frag4,64}]
(a@sam) 19>

Fragmentation Properties

Thetable property f r ag_pr operti es can beread with the function mnesia:table info(Tab, frag_properties). The
fragmentation properties are alist of tagged tuples with arity 2. By default the list is empty, but when it is non-empty
it triggers Mhesi a to regard the table as fragmented. The fragmentation properties are as follows:

{n_fragments, Int}

n_f ragment s regulates how many fragments that the table currently has. This property can explicitly be set
at table creation and later be changed with { add_frag, NodesOrDi st} ordel _frag.n_fragnents
defaultsto 1.

{node_pool, List}

The node pool contains a list of nodes and can explicitly be set at table creation and later be changed with
{add_node, Node} or{del node, Node}. At tablecreation VMhesi a triesto distribute the replicas of

Ericsson AB. All Rights Reserved.: Mnesia | 35

1.6 Miscellaneous Mnesia Features

each fragment evenly over all the nodes in the node pool. Hopefully all nodes end up with the same number of
replicas. node_pool defaultsto the return value from the function mnesia: system info(db_nodes).

{n_ramcopies, Int}
Regulates how many r am copi es replicas that each fragment is to have. This property can explicitly
be set at table creation. Defaults is O, but if n_di sc_copi es and n_di sc_only_copi es aso are 0,
n_ram copi es defaultsto 1.

{n_disc_copies, Int}
Regulates how many di sc_copi es replicas that each fragment is to have. This property can explicitly be set
at table creation. Default isO.

{n_disc_only copies, Int}
Regulates how many di sc_onl y_copi es replicasthat each fragment isto have. This property can explicitly
be set at table creation. Defaultsis 0.

{foreign_key, ForeignKey}

For ei gnKey can either betheatomundef i ned or thetuple{ For ei gnTab, Attr},whereAttr denotes
an attribute that isto be interpreted as akey in another fragmented table named For ei gnTab. Mhesi a ensures
that the number of fragmentsin this table and in the foreign table are always the same.

When fragments are added or deleted, Mhesi a automatically propagates the operation to all fragmented tables
that have a foreign key referring to this table. Instead of using the record key to determine which fragment
to access, the value of field At t r is used. This feature makes it possible to colocate records automatically in
different tables to the same node. f or ei gn_key defaultsto undef i ned. However, if the foreign key is set
to something else, it causes the default values of the other fragmentation properties to be the same values as the
actual fragmentation properties of the foreign table.

{hash_nodul e, Atont

Enables definition of an aternative hashing scheme. The module must implement the mnesia_frag_hash callback
behavior. This property can explicitly be set at table creation. Default ismrmesi a_frag_hash.

{hash_state, Tern}

Enables a table-specific parameterization of a generic hash module. This property can explicitly be set at table
creation. Default isundef i ned.

36 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

Eshell V4.7.3.3 (abort with ~G)
(a@sam) 1> mnesia:start().
ok
(a@sam)2> PrimProps = [{n_fragments, 7}, {node pool, [node()]}].
[{n_fragments,7},{node pool, [a@sam]}]
(a@sam)3> mnesia:create table(prim dict,
[{frag properties, PrimProps},
{attributes, [prim _key,prim val]}]).
{atomic, ok}
(a@sam)4> SecProps = [{foreign key, {prim dict, sec val}}].
[{foreign key, {prim dict,sec val}}]
(a@sam)5> mnesia:create table(sec dict,
[{frag properties, SecProps},
(a@sam) 5> {attributes, [sec _key, sec vall}]).
{atomic, ok}
(a@sam)6> Write = fun(Rec) -> mnesia:write(Rec) end.
#Fun<erl eval>
(a@sam)7> PrimKey = 11.
11
(a@sam)8> SecKey = 42.
42
(a@sam)9> mnesia:activity(sync dirty, Write,
[{prim dict, PrimKey, -11}1, mnesia frag).
ok
(a@sam) 10> mnesia:activity(sync dirty, Write,
[{sec dict, SecKey, PrimKey}], mnesia frag).
ok
(a@sam) 11> mnesia:change table frag(prim dict, {add frag, [node()1}).
{atomic, ok}
(a@sam) 12> SecRead = fun(PrimKey, SecKey) ->
mnesia:read({sec dict, PrimKey}, SecKey, read) end.
#Fun<erl eval>
(a@sam) 13> mnesia:activity(transaction, SecRead,
[PrimKey, SecKeyl], mnesia frag).
[{sec dict,42,11}]
(a@sam)14> Info = fun(Tab, Item) -> mnesia:table info(Tab, Item) end.
#Fun<erl eval>
(a@sam) 15> mnesia:activity(sync dirty, Info,
[prim dict, frag size], mnesia frag).
[{prim dict,0},
{prim dict frag2,0},
{prim dict frag3,0},
{prim dict frag4,1},
{prim dict frag5,0},
{prim dict frag6,0},
{prim dict frag7,0},
{prim dict frag8,0}]
(a@sam) 16> mnesia:activity(sync dirty, Info,
[sec dict, frag size], mnesia frag).
[{sec dict,0},
{sec dict frag2,0},
{sec dict frag3,0},
{sec dict frag4,1},
{sec dict frag5,0},
{sec dict frag6,0},
{sec dict frag7,0},
{sec dict frag8,0}]
(a@sam) 17>

Management of Fragmented Tables

The function mesi a: change_t abl e_frag(Tab, Change) isintended to be used for reconfiguration of
fragmented tables. Argument Change isto have one of the following values:

Ericsson AB. All Rights Reserved.: Mnesia | 37

1.6 Miscellaneous Mnesia Features

{activate, FragProps}

Activates the fragmentation properties of an existing table. Fr agPr ops is either to contain { node_pool ,
Nodes} or be empty.

deactivate

Deactivates the fragmentation properties of atable. The number of fragments must be 1. No other table can refer
tothistableinitsforeign key.

{add_frag, NodesOrDi st}

Adds a fragment to a fragmented table. All records in one of the old fragments are rehashed and about half of
them are moved to the new (last) fragment. All other fragmented tables, which refer to thistable in their foreign
key, automatically get a new fragment. Also, their records are dynamically rehashed in the same manner as for
the main table.

Argument NodesOr Di st can either be alist of nodes or the result from the function mnesia:table_info(Tab,
frag_dist). Argument NodesOr Di st is assumed to be a sorted list with the best nodes to host new replicas
first in the list. The new fragment gets the same number of replicas asthe first fragment (seen_r am copi es,
n_di sc_copi es,andn_di sc_only_copi es). TheNodesO Di st list must at least contain one element
for each replicathat needs to be allocated.

del frag

Deletes a fragment from a fragmented table. All records in the last fragment are moved to one of the other
fragments. All other fragmented tables, which refer to thistable in their foreign key, automatically lose their last
fragment. Also, their records are dynamically rehashed in the same manner as for the main table.

{add_node, Node}

Adds a node to node_pool. The new node pool affects the list returned from the function
mnesia:table _info(Tab, frag_dist).

{del _node, Node}

Deletes a node from node_pool . The new node pool affects the list returned from the function
mnesia:table_info(Tab, frag_dist).

Extensions of Existing Functions

The function mnesia:create table/2 creates a brand new fragmented table, by setting table property
frag_properti es tosome proper values.

The function mnesia: delete table/1 deletes a fragmented table including all its fragments. There must however not
exist any other fragmented tables that refer to thistablein their foreign key.

The function mnesia:table_info/2 now understandsitemf rag_properti es.

If the function mesi a: t abl e_i nf o/ 2 is started in the activity context of module mesi a_f r ag, information
of several new items can be obtained:

base table

The name of the fragmented table
n_fragnments

The actual number of fragments
node_pool

The pool of nodes
n_ram copi es
n_di sc_copi es

38 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

n_di sc_onl y_copi es
The number of replicas with storage type r am copi es, di sc_copi es, and di sc_onl y_copi es,
respectively. The actual values are dynamically derived from the first fragment. The first fragment serves as
a protype. When the actual values need to be computed (for example, when adding new fragments) they are
determined by counting the number of each replica for each storage type. This means that when the functions
mnesia:add_table _copy/3, mnesia:del_table _copy/2, and mnesia:change_table copy_type/2 are applied on the
first fragment, it affects the settingsonn_r am copi es,n_di sc_copi es,andn_di sc_onl y_copi es.

forei gn_key
Theforeign key

foreigners
All other tablesthat refer to thistablein their foreign key

frag_namnes
The names of all fragments

frag_di st

A sorted list of { Node, Count } tuplesthat are sorted inincreasing Count order. Count isthetotal number of
replicasthat thisfragmented table hosts on each Node. Thelist always containsat least all nodesinnode_pool .
Nodes that do not belongto node_pool areput last in the list even if their Count islower.

frag_size
A listof { Name, Si ze} tuples, where Nane isafragment Name, and Si ze ishow many records it contains
frag_nenory
A list of { Nane, Menory} tuples, where Nane isafragment Name, and Menor y is how much memory it
occupies
si ze
Total size of all fragments
nmenory
Total memory of all fragments

Load Balancing

There are several algorithmsfor distributing records in afragmented table evenly over apool of nodes. No oneis best,
it depends on the application needs. The following examples of situations need some attention:

« permanent change of nodes.Whenanew permanent db_node isintroduced or dropped, it can be
time to change the pool of nodes and redistribute the replicas evenly over the new pool of nodes. It can also be
time to add or delete a fragment before the replicas are redistributed.

* size/menory threshol d. When the total size or total memory of afragmented table (or asingle
fragment) exceeds some application-specific threshold, it can be time to add a new fragment dynamically to
obtain a better distribution of records.

e tenporary node down.When anodetemporarily goesdown, it can be time to compensate some
fragments with new replicas to keep the desired level of redundancy. When the node comes up again, it can be
time to remove the superfluous replica.

« overload threshol d. When the load on some node exceeds some application-specific threshold, it can be
time to either add or move some fragment replicas to nodes with lower load. Take extra care if the table has a
foreign key relation to some other table. To avoid severe performance penalties, the same redistribution must be
performed for all the related tables.

Ericsson AB. All Rights Reserved.: Mnesia | 39

1.6 Miscellaneous Mnesia Features

Use the function mmesi a:change_table_frag/2 to add new fragments and apply the
usua schema manipulation functions (such as mnesiaiadd table copy/3, mnesia:del_table copy/2, and
mnesia: change_table _copy_type/2) on each fragment to perform the actual redistribution.

1.6.4 Local Content Tables

Replicated tables have the same content on all nodes wherethey are replicated. However, it is sometimes advantageous
to have tables, but different content on different nodes.

If attribute{ | ocal _content, true} isspecified whenyou create thetable, the table resides on the nodes where
you specify the table to exist, but the write operations on the table are only performed on the local copy.

Furthermore, when the table isinitialized at startup, the table is only initialized locally, and the table content is not
copied from another node.

1.6.5 Disc-Less Nodes

Mhesi a can be run on nodes that do not have a disc. Replicas of di sc_copi es or di sc_only_copi es are
not possible on such nodes. This is especialy troublesome for the schena table, as Mhesi a needs the schema to
initialize itself.

The schematable can, as other tables, reside on one or more nodes. The storage type of the schematable can either be
di sc_copi esorram copi es (butnotdi sc_onl y_copi es). Atstartup, Mhesi a usesitsschemato determine
with which nodesit isto try to establish contact. If any other node is started already, the starting node mergesitstable
definitions with the table definitions brought from the other nodes. This also applies to the definition of the schema
tableitself. Application parameter ext r a_db_nodes containsalist of nodesthat Mnesi a alsoisto establish contact
with besides those found in the schema. Default is[] (empty list).

Hence, when a disc-less node needs to find the schema definitions from a remote node on the network, this
information must be supplied through application parameter - mesi a extra_db_nodes NodeLi st . Without
this configuration parameter set, Mhesi a starts as a single node system. Also, the function mnesia:change_config/2
can be used to assign avalueto ext r a_db_nodes and force a connection after Mhesi a has been started, that is,
mmesi a: change_confi g(extra_db_nodes, NodelList).

Application parameter schema_| ocat i on controlswhere Mhesi a searchesfor its schema. The parameter can be
one of the following atoms:
di sc
Mandatory disc. The schemais assumed to be located in the Vnesi a directory. If the schema cannot be found,
Mhesi a refusesto start.
ram

Mandatory RAM. The schema resides in RAM only. At startup, atiny new schema is generated. This default
schema contains only the definition of the schema table and resides on the local node only. Since no other nodes
arefound in the default schema, configuration parameter ext r a_db_nodes must be used to let the node share
its table definitions with other nodes. (Parameter ext r a_db_nodes can also be used on disc-full nodes.)

opt _di sc

Optional disc. The schema can reside on either disc or RAM. If the schemais found on disc, Mhesi a starts as
a disc-full node (the storage type of the schematable is disc_copies). If no schemais found on disc, Mhesi a
starts as a disc-less node (the storage type of the schematableisr am copi es). The default for the application
parameter isopt _di sc.

When schena_| ocati on is set to opt _di sc, the function mnesia:change table copy_type/3 can be used to
change the storage type of the schema. Thisisillustrated as follows:

40 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

1> mnesia:start().

ok

2> mnesia:change table copy type(schema, node(), disc copies).
{atomic, ok}

Assuming that the call to mnesia: start/0 does not find any schema to read on the disc, Mhesi a starts as a disc-less
node, and then change it to a node that use the disc to store the schema locally.

1.6.6 More about Schema Management

Nodes can be added to and removed from a IVhesi a system. This can be done by adding a copy of the schema to
those nodes.

The functions mnesia:add_table copy/3 and mnesia:del_table copy/2 can be used to add and delete replicas of the
schematable. Adding a node to the list of nodes where the schema is replicated affects the following:

« It allowsother tablesto be replicated to this node.
* |t causes Mnesi a totry to contact the node at startup of disc-full nodes.

The function call mesi a: del _t abl e_copy(schema, nynode@ost) deletes node mynode@ost from
the Mhesi a system. The cal failsif Mhesi a isrunning on mynode@ost . The other Mhesi a nodes never try to
connect to that node again. Notice that if there is adisc resident schemaon node nynode@ost , theentire Mnesi a
directory isto be deleted. Thisis done with the function mnesia:delete_schema/1. If Mhesi a is started again on node
mynode@ost and the directory has not been cleared, the behavior of Mhesi a isundefined.

If the storage type of the schemaisram copi es, that is, a disc-less node, Mhesi a does not use the disc on that
particular node. The disc use is enabled by changing the storage type of tableschema todi sc_copi es.

New schemas are created explicitly with the function mnesia:create_schema/1 or implicitly by starting Mnhesi a
without adisc resident schema. Whenever atable (including the schematable) is created, it is assigned its own unique
cookie. The schematableis not created with the function mnesia:create_table/2 as normal tables.

At startup, Mnesi a connects different nodes to each other, then they exchange table definitions with each other, and
the table definitions are merged. During the merge procedure, Mhesi a performs a sanity test to ensure that the table
definitions are compatible with each other. If atable exists on several nodes, the cookie must be the same, otherwise
Mhesi a shut down one of the nodes. This unfortunate situation occurs if a table has been created on two nodes
independently of each other while they were disconnected. To solve this, one of the tables must be deleted (as the
cookies differ, it isregarded to be two different tables even if they have the same name).

Merging different versions of the schema table does not always require the cookies to be the same. If the storage
type of the schematableisdi sc_copi es, the cookie isimmutable, and all other db_nodes must have the same
cookie. When the schema is stored as type r am _copi es, its cookie can be replaced with a cookie from another
node (r am_copi es or di sc_copi es). The cookie replacement (during merge of the schema table definition) is
performed each time a RAM node connects to another node.

Further, the following applies:

* mnesia:system info(schema_location) and mnesia: system info(extra_db_nodes) can be used to determine the
actual valuesof schema_I| ocat i on andextra_db_nodes, respectively.

e mnesia:system info(use _dir) can be used to determine whether Mhesi a isactually using the Mhesi a
directory.

e use_dir canbedetermined even before Mhesi a is started.

The function mnesia:info/0 can now be used to print some system information even before Mhesi a is started. When
Mhesi a is started, the function prints more information.

Ericsson AB. All Rights Reserved.: Mnesia | 41

1.6 Miscellaneous Mnesia Features

Transactionsthat update the definition of atablerequiresthat Mhesi a isstarted on all nodeswhere the storage type of
theschemaisdi sc_copi es. All replicas of the table on these nodes must a so beloaded. There are afew exceptions
to these availability rules:

» Tables can be created and new replicas can be added without starting all the disc-full nodes.

* New replicas can be added before all other replicas of the table have been loaded, provided that at |east one
other replicais active.

1.6.7 Mnesia Event Handling
System events and table events are the two event categories that Mhesi a generatesin various situations.
A user process can subscribe on the events generated by Mnesi a. The following two functions are provided:

mnesi a: subscribe(Event-Category)

Ensures that a copy of all events of type Event - Cat egor y are sent to the calling process
mnesi a: unsubscribe(Event-Category)

Removes the subscription on events of type Event - Cat egory

Event - Cat egor y can be either of the following:

e Theatomsystem

e Theaomactivity

e« Thetuple{t abl e, Tab, sinple}

e Thetuple{t abl e, Tab, detail ed}

Theold event category { t abl e, Tab} isthe same event category as{t abl e, Tab, si nple}.

The subscribe functions activate a subscription of events. The events are delivered as messages to the process
evaluating the function mnesia: subscribe/1 The syntax is as follows:

« {mmesia_system event, Event} for system events
e {mmesia_activity event, Event} for activity events
« {mmesia_table_event, Event} fortableevents

The event types are described in the next sections.

All system events are subscribed by the Mnesi a gen_event handler. The default gen_event handler is
mmesi a_event , but it can be changed by using application parameter event _nodul e. Thevalueof thisparameter
must be the name of a module implementing a complete handler, as specified by the gen_event modulein STDLI B.

mnesia: system _info(subscribers) and mnesia:table _info(Tab, subscribers) can be used to determine which processes
are subscribed to various events.

System Events
The system events are as follows:

{mesi a_up, Node}
Mnesiais started on anode. Node is the node name. By default this event is ignored.

{mesi a_down, Node}
Mnesiais stopped on anode. Node isthe node name. By default this event isignored.

{mesi a_checkpoi nt _activat ed, Checkpoi nt}
A checkpoint with the name Checkpoi nt isactivated and the current node is involved in the checkpoint.
Checkpoints can be activated explicitly with the function mnesia: activate _checkpoint/1 or implicitly at backup,
when adding table replicas, at internal transfer of data between nodes, and so on. By default thisevent is
ignored.

42 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

{mesi a_checkpoi nt _deacti vat ed, Checkpoi nt}
A checkpoint with the name Checkpoi nt isdeactivated and the current node is involved in the checkpoint.
Checkpoints can be deactivated explicitly with the function mnesia: deactivate/1 or implicitly when the last
replica of atable (involved in the checkpoint) becomes unavailable, for example, at node-down. By default this
event isignored.

{mmesi a_overl oad, Detail s}

Mhesi a on the current node is overloaded and the subscriber is to take action.

A typical overload situation occurs when the applications perform more updates on disc resident tables than
Mhesi a can handle. Ignoring this kind of overload can lead to a situation where the disc space is exhausted
(regardless of the size of the tables stored on disc).

Each update is appended to the transaction log and occasionally (depending on how it is configured) dumped to
the tables files. The table file storage is more compact than the transaction log storage, especialy if the same
record is updated repeatedly. If the thresholds for dumping the transaction log are reached before the previous
dump isfinished, an overload event istriggered.

Another typical overload situation is when the transaction manager cannot commit transactions at the same pace
asthe applications perform updates of disc resident tables. When this occurs, the message queue of the transaction
manager continues to grow until the memory is exhausted or the load decreases.

The same problem can occur for dirty updates. The overload is detected locally on the current node, but its cause
can be on another node. A pplication processes can cause high load if any table resides on another node (replicated
or not). By default thisevent isreported to er r or _I ogger .

{inconsi stent _dat abase, Context, Node}
Vhesi a regards the database as potential inconsistent and gives its applications a chance to recover
from the inconsistency. For example, by installing a consistent backup as fallback and then restart the
system. An dternative isto pick aMast er Node from mnesia: system info(db_nodes) and invoke
mnesia:set_ master_node([MasterNode]). By default an error isreportedto er r or _| ogger .
{mesi a_fatal, Format, Args, BinaryCore}

Vhesi a detected afatal error and terminates soon. The fault reason is explained in For mat and Ar gs, which
canbegivenasinputtoi o: format/ 2 or senttoerror _| ogger . By defaultitissenttoerr or _| ogger.

Bi nar yCor e is abinary containing a summary of the Mhesi a internal state at the time when the fatal error
was detected. By default the binary is written to a unique filename on the current directory. On RAM nodes,
the core isignored.

{mesi a_info, Format, Args}
Vhesi a detected something that can be of interest when debugging the system. Thisis explained in For nat
and Ar gs, which can appear asinputtoi o: format/ 2 or senttoerror _| ogger . By default thisevent is
printed withi o: f or mat / 2.

{mmesi a_error, Format, Args}
Vhesi a has detected an error. The fault reason is explained in For mat and Ar gs, which can be given as
inputtoi o: fornmat/ 2 orsenttoerror _| ogger . By default thisevent isreportedtoer r or _| ogger .

{mmesi a_user, Event}
An application started the function mnesia:report_event(Event). Event can be any Erlang data structure.
When tracing a system of Mhesi a applications, it is useful to be able to interleave own events of Mhesi a
with application-related events that give information about the application context. Whenever the application
starts with anew and demanding Wvhesi a activity, or enters a new and interesting phase in its execution, it can
beagood ideatouse mesi a: report _event/ 1.

Activity Events

Currently, there is only one type of activity event:

Ericsson AB. All Rights Reserved.: Mnesia | 43

1.6 Miscellaneous Mnesia Features

{compl ete, ActivitylD}

This event occurs when a transaction that caused a modification to the database is completed. It is useful for
determining when a set of table events (see the next section), caused by a given activity, have been sent. Once
this event isreceived, it is guaranteed that no further table events with the same Act i vi t yl Dwill be received.
Notice that this event can still be received even if no table events with a corresponding Act i vi t yl D were
received, depending on the tables to which the receiving process is subscribed.

Dirty operations always contain only one update and thus no activity event is sent.

Table Events
Table events are events related to table updates. There are two types of table events, simple and detailed.
Thesimpletable eventsaretupleslike{ Oper, Record, Activityld},where

e Oper istheoperation performed.
» Recor d istherecord involved in the operation.
e Activityl distheidentity of the transaction performing the operation.

Notice that the record name is the table name even whenr ecor d_nane has another setting.
The table-related events that can occur are as follows:

{write, NewRecord, Activityld}
A new record has been written. NewRecor d contains the new record value.

{del ete_object, A dRecord, Activityld}
A record has possibly been deleted with mnesia:delete_object/1. O dRecor d contains the value of the old
record, as stated as argument by the application. Notice that other records with the same key can remain in the
tableif itis of type bag.

{del ete, {Tab, Key}, Activityld}
One or more records have possibly been deleted. All records with the key Key in the table Tab have been
deleted.

The detailed table eventsaretupleslike{ Oper, Tabl e, Data, [Jd dRecs], Activityld},where

e (Oper istheoperation performed.

e Tabl e isthetableinvolved in the operation.

» Dat aistherecord/OID written/del eted.

* A dRecs isthe contents before the operation.

e Activityl distheidentity of the transaction performing the operation.

The table-related events that can occur are as follows:

{write, Table, NewRecord, [d dRecords], Activityld}
A new record has been written. NewRecor d contains the new record value and O dRecor ds containsthe
records before the operation is performed. Notice that the new content depends on the table type.
{del ete, Table, What, [OA dRecords], Activityld}
Records have possibly been deleted. What iseither { Tabl e, Key} or arecord { Recor dNane,
Key, ...} that wasdeleted. Notice that the new content depends on the table type.

1.6.8 Debugging Mnesia Applications

Debugging aivnesi a application can be difficult for various reasons, primarily related to difficultiesin understanding
how the transaction and table load mechanisms work. Another source of confusion can be the semantics of nested
transactions.

The debug level of Mhesi a is set by calling the function mnesia:set_debug_level(Level), where Level is one of the
following:

44 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

none
No trace outputs. Thisis the default.

ver bose
Activates tracing of important debug events. These events generate { mesi a_i nfo, Format, Args}
system events. Processes can subscribe to these events with the function mnesia: subscribe/1. The events are
aways sent to the Vhesi a event handler.

debug
Activates al events at the verbose level plus traces of all debug events. These debug events generate
{mesi a_info, Format, Args} system events. Processes can subscribe to these events with
mesi a: subscri be/ 1. The events are always sent to the Mhesi a event handler. On this debug level, the
Vhesi a event handler starts subscribing to updates in the schematable.

trace
Activates al events at the debug level. On thislevel, the Mhesi a event handler starts subscribing to updates
onall Mhesi a tables. Thislevel isintended only for debugging small toy systems, as many large events can be
generated.

fal se
An diasfor none.

true
An dlias for debug.

The debug level of Mnhesi a itself isalso an application parameter, making it possible to start an Erlang system to turn
on Mhesi a debug in theinitial startup phase by using the following code:

% erl -mnesia debug verbose

1.6.9 Concurrent Processes in Mnesia

Programming concurrent Erlang systemsis the subject of a separate book. However, it isworthwhile to draw attention
to the following features, which permit concurrent processes to exist in alvhesi a system:

e A group of functions or processes can be called within a transaction. A transaction can include statements that
read, write, or delete data from the DBMS. Many such transactions can run concurrently, and the programmer
does not need to explicitly synchronize the processes that manipulate the data.

All programs accessing the database through the transaction system can be written asif they had sole accessto the
data. Thisis adesirable property, as all synchronization istaken care of by the transaction handler. If a program
reads or writes data, the system ensures that no other program tries to manipul ate the same data at the same time.

« Tables can be moved or deleted, and the layout of atable can be reconfigured in various ways. An important
aspect of the implementation of these functionsis that user programs can continue to use atable whileit is
being reconfigured. For example, it is possible to move atable and perform write operations to the table at
the sametime. Thisisimportant for many applications that require continuously available services. For more
information, see Transactions and Other Access Contexts.

1.6.10 Prototyping

If and when you would like to start and manipulate Mhesi a, it isoften easier to write the definitions and data into an
ordinary text file. Initially, no tables and no data exist, or which tables are required. At theinitial stages of prototyping,
it is prudent to write all data into one file, process that file, and have the data in the file inserted into the database.
Mhesi a can be initialized with data read from a text file. The following two functions can be used to work with
text files.

« mnesia:load_textfile(Filename) loads a series of local table definitions and data found in the file into Mhesi a.
Thisfunction also starts Mhesi a and possibly creates a new schema. The function operates on the local node
only.

Ericsson AB. All Rights Reserved.: Mnesia | 45

1.6 Miscellaneous Mnesia Features

« mnesia:dump_to_textfile(Filename) dumps all local tables of aMhesi a system into atext file, which can be
edited (with anormal text editor) and later rel oaded.

These functions are much slower than the ordinary store and load functions of Mhesi a. However, this is mainly
intended for minor experiments and initial prototyping. The major advantage of these functionsis that they are easy
to use.

The format of the text fileis as follows:

{tables, [{Typename, [Options]},

{Typename2 1}
{Typename, Attributel, Attribute2}.
{Typename, Attributel, Attribute2}.

Opti ons isalist of { Key, Val ue} tuplesconforming to the options that you can give to mnesia:create table/2.
For example, to start playing with a small database for healthy foods, enter the following datainto file FRUI TS:

{tables,
[{fruit, [{attributes, [name, color, taste]}l},
{vegetable, [{attributes, [name, color, taste, pricel}]}1}.

{fruit, orange, orange, sweet}.

{fruit, apple, green, sweet}.

{vegetable, carrot, orange, carrotish, 2.55}.
{vegetable, potato, yellow, none, 0.45}.

The following session with the Erlang shell shows how to load the FRUI TS database:

46 | Ericsson AB. All Rights Reserved.: Mnesia

1.6 Miscellaneous Mnesia Features

% erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ~G)

1> mnesia:load textfile("FRUITS").
New table fruit

New table vegetable

{atomic, ok}

2> mnesia:info().

---> Processes holding locks <---
---> Processes waiting for locks <---
---> Pending (remote) transactions <---
---> Active (local) transactions <---
---> Uncertain transactions <---

---> Active tables <---

vegetable : with 2 records occuping 299 words of mem
fruit : with 2 records occuping 291 words of mem
schema : with 3 records occuping 401 words of mem

===> System info in version "1.1", debug level = none <===
opt disc. Directory "/var/tmp/Mnesia.nonode@nohost" is used.
use fallback at restart = false

running db nodes [nonode@nohost]

stopped db nodes [1

remote [

ram_copies [fruit,vegetable]

disc_copies [schema]

disc_only copies []

[{nonode@nohost,disc copies}] = [schema]
[{nonode@nohost, ram copies}] = [fruit,vegetable]

3 transactions committed, 0 aborted, O restarted, 2 logged to disc
0 held locks, 0 in queue; 0 local transactions, 0 remote

0 transactions waits for other nodes: []

ok

3>

It can be seen that the DBM S was initiated from aregular text file.

1.6.11 Object-Based Programming with Mnesia

The Conpany database, introduced in Getting Sarted, has three tables that store records (enpl oyee, dept,
pr oj ect), and three tables that store relationships (manager, at _dep, i n_proj). Thisis a normalized data
model, which has some advantages over a non-normalized data model.

Itis more efficient to do ageneralized search in anormalized database. Some operations are also easier to perform on
anormalized data model. For example, one project can easily be removed, as the following example illustrates:

remove proj(ProjName) ->

F = fun() ->

Ip = gqlc:e(qlc:q([X || X <- mnesia:table(in _proj),
X#in proj.proj name == ProjName]

),
mnesia:delete({project, ProjName}),
del in projs(Ip)

end,
mnesia:transaction(F).

del in projs([Ip|Tail]) ->
mnesia:delete object(Ip),
del in projs(Tail);

del in projs([]) ->
done.

Ericsson AB. All Rights Reserved.: Mnesia | 47

1.6 Miscellaneous Mnesia Features

In reality, data models are seldom fully normalized. A realistic alternative to a normalized database model would be
adata model that is not even in first normal form. Mhesi a is suitable for applications such as telecommunications,
because it is easy to organize data in a flexible manner. A Mhesi a database is always organized as a set of tables.
Each table isfilled with rows, objects, and records. What sets Mhesi a apart is that individual fieldsin arecord can
contain any type of compound data structures. An individual field in arecord can contain lists, tuples, functions, and
even record code.

Many telecommunications applications have unique requirements on lookup times for certain types of records. If the
Conpany database had been a part of a telecommunications system, it could be to minimize the lookup time of an
employeetogether with alist of the projectsthe employeeisworking on. If thisisthe case, adrastically different data
model without direct relationships can be chosen. Y ou would then have only the records themselves, and different
records could contain either direct referencesto other records, or contain other recordsthat are not part of the Mhesi a
schema.

The following record definitions can be created:

-record(employee, {emp no,
name,
salary,
sex,
phone,
room _no,
dept,
projects,
manager}).

-record(dept, {id,
name}).

-record(project, {name,
number,
location}).

A record that describes an employee can look as follows:

Me = #employee{emp no= 104732,
name = klacke,

salary = 7,

sex = male,

phone = 99586,

room no = {221, 015},

dept = 'B/SFR',

projects = [erlang, mnesia, otpl],
manager = 114872},

This model has only three different tables, and the employee records contain references to other records. The record
has the following references:

e ' B/ SFR referstoadept record.

e J[erlang, mmesia, otp] isalistof threedirect referencesto three different pr oj ect s records.

e 114872 refersto another employee record.

The Mnhesi a record identifiers ({ Tab, Key}) can also be used as references. In this case, attribute dept would
besettovalue{dept, 'B/ SFR } instead of ' B/ SFR .

With this data model, some operations execute considerably faster than they do with the normalized data model in the
Conpany database. However, some other operati ons become much more complicated. In particular, it becomes more
difficult to ensure that records do not contain dangling pointers to other non-existent, or deleted, records.

48 | Ericsson AB. All Rights Reserved.: Mnesia

1.7 Mnesia System Information

Thefollowing code exemplifies a search with a non-normalized datamodel. To find al employees at department Dep
with asalary higher than Sal ar y, use the following code:

get emps(Salary, Dep) ->
Q = gqlc:q(
[E || E <- mnesia:table(employee),
E#employee.salary > Salary,
E#employee.dept == Dep]
)I
F = fun() -> glc:e(Q) end,
transaction(F).

Thiscode is easier to write and to understand, and it also executes much faster.

It iseasy to show examples of code that executesfaster if anon-normalized datamodel isused, instead of anormalized
model. The main reason is that fewer tables are required. Therefore, data from different tables can more easily be
combined injoin operations. In the previous example, thefunctionget _enps/ 2 istransformed from ajoin operation
into asimple query, which consists of a selection and a projection on one single table.

1.7 Mnesia System Information

The following topics are included:

» Database configuration data

e Coredumps

e Dumping tables

e Checkpoints

« Startupfiles, log file, and data files

e Loading tables at startup

* Recovery from communication failure

* Recovery of transactions

e Backup, restore, fallback, and disaster recovery

1.7.1 Database Configuration Data
The following two functions can be used to retrieve system information. For details, see the Reference Manual.

* mnesia:table_info(Tab, Key) -> Info | exit({aborted,Reason}) returns information about one table, for example,
the current size of the table and on which nodes it resides.

* mnesia:system_info(Key) -> Info | exit({aborted, Reason}) returns information about the Mhesi a system, for
example, transaction statistics, db_nodes, and configuration parameters.

1.7.2 Core Dumps

If Mhesi a mafunctions, system information is dumped to file Mhesi aCor e. Node. When. The type of system
information contained in thisfile can also be generated with thefunctionmmesi a_| i b: cor edunp() . If aMhesi a
system behaves strangely, it is recommended that a Mhesi a core dump fileisincluded in the bug report.

1.7.3 Dumping Tables

Tables of typer am _copi es are by definition stored in memory only. However, these tables can be dumped to disc,
either at regular intervals or before the system is shut down. The function mnesia:dump_tables(TabList) dumps all
replicas of a set of RAM tables to disc. The tables can be accessed while being dumped to disc. To dump the tables
to disc, all replicas must have the storage typer am_copi es.

Ericsson AB. All Rights Reserved.: Mnesia | 49

1.7 Mnesia System Information

The table content is placed in a. DCDfile on the disc. When the Mhesi a system is started, the RAM tableisinitially
loaded with datafrom its. DCDfile.

1.7.4 Checkpoints

A checkpoint is a transaction consistent state that spans over one or more tables. When a checkpoint is activated, the
system remembers the current content of the set of tables. The checkpoint retains a transaction consistent state of the
tables, allowing the tables to be read and updated while the checkpoint is active. A checkpoint is typically used to
back up tables to external media, but they are also used internally in Mhesi a for other purposes. Each checkpoint is
independent and a table can be involved in severa checkpoints simultaneously.

Each table retains its old contentsin a checkpoint retainer. For performance critical applications, it can beimportant to
realize the processing overhead associated with checkpoints. In aworst case scenario, the checkpoint retainer consumes
more memory than the table itself. Also, each update becomes dlightly slower on those nodes where checkpoint
retainers are attached to the tables.

For each table, it is possible to choose if there is to be one checkpoint retainer attached to all replicas of the table, or
if it is enough to have only one checkpoint retainer attached to a single replica. With a single checkpoint retainer per
table, the checkpoint consumes less memory, but it is vulnerable to node crashes. With several redundant checkpoint
retainers, the checkpoint survives aslong asthereis at |east one active checkpoint retainer attached to each table.

Checkpoints can be explicitly deactivated with the function mnesia: deactivate_checkpoint(Name), where Nane isthe
name of an active checkpoint. This function returns ok if successful or { error, Reason} if thereisan error. All
tablesin acheckpoint must be attached to at |east one checkpoint retainer. The checkpoint is automatically deactivated
by Mnhesi a, when any table lacks a checkpoint retainer. This can occur when a node goes down or when areplica
is deleted. Use arguments i n and max (described in the following list) to control the degree of checkpoint retainer
redundancy.

Checkpoints are activated with the function mnesia: activate _checkpoint(Args), where Ar gs isalist of the following
tuples:

 {nane, Nane}, where Nane specifies atemporary name of the checkpoint. The name can be reused when the
checkpoint has been deactivated. If no name is specified, aname is generated automatically.

 {max, MaxTabs}, where MaxTabs isalist of tablesthat are to be included in the checkpoint. Default
is[] (empty list). For these tables, the redundancy is maximized. The old content of the table is retained
in the checkpoint retainer when the main table is updated by the applications. The checkpoint is more fault
tolerant if the tables have several replicas. When new replicas are added by the schema manipulation function
mnesia:add_table copy/3 it also attaches alocal checkpoint retainer.

« {mn, M nTabs},whereM nTabs isalist of tablesthat are to be included in the checkpoint. Defaultis[] .
For these tables, the redundancy is minimized, and there isto be single checkpoint retainer per table, preferably
at the local node.

« {allow renote, Bool },wheref al se meansthat all checkpoint retainers must belocal. If atable does
not reside locally, the checkpoint cannot be activated. t r ue alows checkpoint retainers to be allocated on any
node. Default ist r ue.

e {ramoverrides_dunp, Bool }. Thisargument only appliesto tables of typer am copi es. Bool
specifiesif the table statein RAM isto override the table state on disc. t r ue means that the latest committed
recordsin RAM are included in the checkpoint retainer. These are the records that the application accesses.

f al se meansthat the records on the disc . DAT file areincluded in the checkpoint retainer. These records are
loaded on startup. Default isf al se.

The function mnesia: activate_checkpoint(Args) returns one of the following values:

« {ok, Name, Nodes}
e {error, Reason}

Nane isthe checkpoint name. Nodes are the nodes where the checkpoint is known.

50 | Ericsson AB. All Rights Reserved.: Mnesia

1.7 Mnesia System Information

A list of active checkpoints can be obtained with the following functions:

« mnesia:system info(checkpoints) returns all active checkpoints on the current node.
* mnesia:table_info(Tab, checkpoints) returns active checkpoints on a specific table.

1.7.5 Startup Files, Log File, and Data Files

This section describes the internal files that are created and maintained by the Mhesi a system. In particular, the
workings of the Mhesi a log are described.

Startup Files
Sart Mnesia states the following prerequisites for starting Mhesi a:

e An Erlang session must be started and aVnesi a directory must be specified for the database.
e A database schema must beinitiated, using the function mnesia: create_schema/1.

The following example shows how these tasks are performed:
Step 1: Start an Erlang session and specify aMhesi a directory for the database:

% erl -sname klacke -mnesia dir '"/ldisc/scratch/klacke"'

Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with "G)

(klacke@gin) 1> mnesia:create schema([node()]).
ok

(klacke@gin)?2>

~Z

Suspended

Step 2: You can inspect the Vhesi a directory to see what files have been created:

% ls -1 /ldisc/scratch/klacke
SrW-rw-r-- 1 klacke staff 247 Aug 12 15:06 FALLBACK.BUP

The response shows that the file FALLBACK. BUP has been created. This is called a backup file, and it contains an
initial schema. If more than one node in the function mnesia: create_schema/1 had been specified, identical backup
fileswould have been created on all nodes.

Step 3: Start Mhesi a:
(klacke@gin)3>mnesia:start().
ok

Step 4: You can see the following listing in the Mhesi a directory:
-rw-rw-r-- 1 klacke staff 86 May 26 19:03 LATEST.LOG
-rw-rw-r-- 1 klacke staff 34507 May 26 19:03 schema.DAT

The schemain the backup file FALLBACK. BUP has been used to generate the file scherma. DAT. Since there are no
other disc resident tables than the schema, no other data files were created. The file FALLBACK. BUP was removed
after the successful "restoration”. Y ou also see some files that are for internal use by Mhesi a.

Step 5: Create atable:

Ericsson AB. All Rights Reserved.: Mnesia | 51

1.7 Mnesia System Information

(klacke@gin)4> mnesia:create table(foo,[{disc copies, [node()]}]).
{atomic, ok}

Step 6: You can see the following listing in the Mhesi a directory:

% ls -1 /ldisc/scratch/klacke

-rw-rw-r-- 1 klacke staff 86 May 26 19:07 LATEST.LOG
-rw-rw-r-- 1 klacke staff 94 May 26 19:07 foo.DCD
-rw-rw-r-- 1 klacke staff 6679 May 26 19:07 schema.DAT

Thefilef 0o. DCD has been created. Thisfile will eventually store all data that is written into thef oo table.

Log File

When starting Vhesi a, a. LOGfile called LATEST. LOGis created and placed in the database directory. Thisfileis
used by Mhesi a to log disc-based transactions. Thisincludes all transactions that write at least one record in atable
that isof storagetypedi sc_copi esordi sc_only_copi es. Thefileasoincludesall operationsthat manipulate
the schemaitself, such as creating new tables. The log format can vary with different implementations of Mhesi a.
The Mhesi a logis currently implemented in the standard library module disk_log in Ker nel .

Thelog file grows continuously and must be dumped at regular intervals. "Dumping the log file" meansthat Mhesi a
performs all the operations listed in the log and place the records in the corresponding . DAT, . DCD, and . DCL data
files. For example, if the operation "write record { f oo, 4, elvis, 6}"islistedin thelog, Mhesi a inserts
the operation into the filef oo. DCL. Later, when Mhesi a thinks that the . DCL fileis too large, the data is moved
to the . DCD file. The dumping operation can be time consuming if the log is large. Notice that the Mhesi a system
continues to operate during log dumps.

By default Mhesi a either dumps the log whenever 100 records have been written in the log or when three minutes
have passed. This is controlled by the two application parameters - mesi a dunp_l og_wite_threshol d
WiteQOperationsand-mesia dunp_log tinme_threshold MI1i Secs.

Before the log is dumped, the file LATEST. LOG s renamed to PREVI OQUS. LOG, and anew LATEST. LOGfileis
created. Once the log has been successfully dumped, the file PREVI QUS. LOGis deleted.

Thelog is aso dumped at startup and whenever a schema operation is performed.

Data Files

The directory listing also contains one . DAT file, which contains the schema itself, contained in the schena. DAT
file. The DAT filesare indexed files, and it is efficient to insert and search for records in these files with a specific key.
The . DAT files are used for the schemaand for di sc_onl y_copi es tables. The Mhesi a datafiles are currently
implemented in the standard library module detsin STDLI B.

All operations that can be performed on det s files can also be performed on the Mhesi a datafiles. For example,
det s contains the function det s: t r aver se/ 2, which can be used to view the contents of a Mhesi a DAT file.
However, this can only be done when Mhesi a isnot running. So, to view the schemafile, do asfollows;

{ok, N} = dets:open file(schema, [{file, "./schema.DAT"},{repair,false},
{keypos, 2}1),

F = fun(X) -> io:format("~p~n", [X]), continue end,

dets:traverse(N, F),

dets:close(N).

52 | Ericsson AB. All Rights Reserved.: Mnesia

1.7 Mnesia System Information

The DAT files must always be opened with option {repair, fal se}. This ensures that these files are
not automatically repaired. Without this option, the database can become inconsistent, because Mhesi a can
believe that the files were properly closed. For information about configuration parameter aut o_r epai r, see
the Reference Manual.

It is recommended that the data files are not tampered with while Mhesi a is running. While not prohibited, the
behavior of Mhesi a isunpredictable.

Thedi sc_copi es tables are stored on disk with . DCL and . DCD files, which are standard di sk_| og files.

1.7.6 Loading Tables at Startup

At startup, Mhesi a loads tables to make them accessible for its applications. Sometimes Mhesi a decidesto load all
tables that reside locally, and sometimes the tables are not accessible until Mhesi a brings a copy of the table from
another node.

To understand the behavior of Mhesi a at startup, it is essential to understand how Mhesi a reacts when it loses
contact with Mhesi a on another node. At this stage, Mhesi a cannot distinguish between a communication failure
and a "normal" node-down. When this occurs, Mhesi a assumes that the other node is no longer running, whereas,
in reality, the communication between the nodes has failed.

To overcome this situation, try to restart the ongoing transactions that are accessing tables on the failing node, and
writeammesi a_down entry to alog file.

At startup, notice that all tables residing on nodes without a mesi a_down entry can have fresher replicas. Their
replicas can have been updated after the termination of Mhesi a on the current node. To catch up with the latest
updates, transfer a copy of the table from one of these other "fresh" nodes. If you are unlucky, other nodes can be
down and you must wait for the table to be loaded on one of these nodes before receiving a fresh copy of the table.

Before an application makes its first accessto atable, mnesia:wait_for_tables(TabList, Timeout) is to be executed to
ensure that the table is accessible from the local node. If the function times out, the application can choose to force
aload of the local replica with mnesia:force load table(Tab) and deliberately lose al updates that can have been
performed on the other nodes whilethelocal nodewasdown. If Mhesi a hasloaded the table on another node already,
or intends to do so, copy the table from that node to avoid unnecessary inconsistency.

Only onetableisloaded by mnesia:force load_table(Tab). Since committed transactions can have caused updates
in severa tables, the tables can become inconsistent because of the forced load.

The allowed AccessMode of a table can be defined to be read_only or read_write. It can be toggled
with the function mnesia:change table access mode(Tab, AccessMode) in runtime. read_onl y tables and
| ocal _cont ent tablesare alwaysloaded locally, asthereisno need for copying the table from other nodes. Other
tables are primarily loaded remotely from active replicas on other nodes if the table has been loaded there already, or
if the running Mhesi a has decided to load the table there already.

At startup, Mhesi a assumes that its local replicais the most recent version and loads the table from disc if either of
the following situations is detected:

e« mesi a_down isreturned from all other nodes that hold a disc resident replica of the table.
* Allreplicasarer am copi es.

Ericsson AB. All Rights Reserved.: Mnesia | 53

1.7 Mnesia System Information

This is normally a wise decision, but it can be disastrous if the nodes have been disconnected because of a
communication failure, as the Mhesi a normal table load mechanism does not cope with communication failures.

When Mhesi a loads many tables, the default load order is used. However, the load order can be affected, by
explicitly changing property | oad_or der for the tables, with the function mnesia:change table load order(Tab,
LoadOrder). LoadOr der is by default O for all tables, but it can be set to any integer. The table with the highest
| oad_or der isloaded first. Changing the load order is especially useful for applications that need to ensure early
availability of fundamental tables. Large peripheral tables are to have alow load order value, perhaps less than O

1.7.7 Recovery from Communication Failure

There are several occasions when Mhesi a can detect that the network has been partitioned because of a
communication failure, for example:

« Mhesi a isoperational aready and the Erlang nodes gain contact again. Then Vhesi a triesto contact
Mhesi a on the other node to seeiif it aso thinks that the network has been partitioned for awhile. If Mhesi a
on both nodes has logged mesi a_down entries from each other, Mhesi a generates a system event, called
{i nconsi stent _database, running partitioned _network, Node},whichissenttothe
Mhesi a event handler and other possible subscribers. The default event handler reports an error to the error
logger.

* |If Mhesi a detects at startup that both the local node and another node received rmesi a_down from each
other, Mhesi a generatesan { i nconsi st ent _dat abase, starting_partitioned_network,
Node} system event and acts as described in the previous item.

If the application detects that there has been acommunication failure that can have caused an inconsistent database, it
can use the function mnesia: set_master_nodes(Tab, Nodes) to pinpoint from which nodes each table can be |oaded.

At startup, the Mhesi a normal table load algorithm is bypassed and the table is loaded from one of the master nodes
defined for the table, regardless of potential mesi a_down entriesin thelog. Nodes can only contain nodes where
the table has areplica. If Nodes is empty, the master node recovery mechanism for the particular table is reset and
the normal load mechanism is used at the next restart.

Thefunction mnesia: set_master _nodes(Nodes) sets master nodes for all tables. For each tableit determinesitsreplica
nodes and starts mnesia: set_master_nodes(Tab, TabNodes) with those replica nodes that are included in the Nodes
list (that is, TabNodes isthe intersection of Nodes and the replica nodes of the table). If the intersection is empty,
the master node recovery mechanism for the particular table is reset and the normal load mechanism is used at the
next restart.

The functions mnesia: system info(master_node_tables) and mnesia:table info(Tab, master_nodes) can be used to
obtain information about the potential master nodes.

Determining what data to keep after a communication failure is outside the scope of Mhesi a. One approach is to
determine which "island" contains most of the nodes. Using option { maj ori ty, t r ue} for critical tables can be a
way to ensure that nodes that are not part of a"majority island" cannot update those tables. Notice that this constitutes
areduction in service on the minority nodes. This would be atradeoff in favor of higher consistency guarantees.

The function mnesia:force_load_table(Tab) can be used to force load the table regardless of which table load
mechanism that is activated.

1.7.8 Recovery of Transactions

A Mhesi a table can reside on one or more nodes. When a table is updated, Mhesi a ensures that the updates are
replicated to all nodes where the table resides. If areplicaisinaccessible (for example, because of atemporary node-
down), Mhesi a performsthe replication later.

On the node where the application is started, there is atransaction coordinator process. If the transaction is distributed,
there is also atransaction participant process on al the other nodes where commit-work needs to be performed.

54 | Ericsson AB. All Rights Reserved.: Mnesia

1.7 Mnesia System Information

Internally Mhesi a usesseveral commit protocols. The selected protocol depends on which tablethat has been updated
in the transaction. If al the involved tables are symmetrically replicated (that is, they al have the samer am nodes,
di sc_nodes, anddi sc_onl y_nodes currently accessible from the coordinator node), alightweight transaction
commit protocol is used.

The number of messages that the transaction coordinator and its participants need to exchange isfew, asthe Vhesi a
table load mechanism takes care of the transaction recovery if the commit protocol getsinterrupted. Since al involved
tables are replicated symmetrically, the transaction is automatically recovered by loading the involved tables from the
same node at startup of afailing node. It does not matter if the transaction was committed or terminated as long asthe
ACID properties can be ensured. The lightweight commit protocol is non-blocking, that is, the surviving participants
and their coordinator finish the transaction, even if any node crashes in the middle of the commit protocol.

If anode goesdown inthe middle of adirty operation, the table load mechanism ensuresthat the updateis performed on
all replicas, or none. Both asynchronous dirty updates and synchronous dirty updates use the same recovery principle
as lightweight transactions.

If atransaction involves updates of asymmetrically replicated tables or updates of the schema table, a heavyweight
commit protocol isused. This protocol can finish thetransaction regardless of how thetablesarereplicated. Thetypical
use of aheavyweight transaction iswhen areplicaisto be moved from one node to another. Then ensurethat thereplica
either isentirely moved or left asit was. Do never end up in a situation with replicas on both nodes, or on no node at
al. Even if anode crashesin the middle of the commit protocol, the transaction must be guaranteed to be atomic. The
heavyweight commit protocol involves more messages between the transaction coordinator and its participants than a
lightweight protocol, and it performs recovery work at startup to finish the terminating or commit work.

The heavyweight commit protocol is aso non-blocking, which allows the surviving participants and their coordinator
to finish the transaction regardless (even if a node crashes in the middle of the commit protocol). When a node fails
at startup, Mhesi a determines the outcome of the transaction and recovers it. Lightweight protocols, heavyweight
protocols, and dirty updates, are dependent on other nodes to be operational to make the correct heavyweight
transaction recovery decision.

If Mhesi a has not started on some of the nodes that are involved in the transaction and neither the local node nor
any of the already running nodes know the outcome of the transaction, Mhesi a waitsfor one, by default. In the worst
case scenario, all other involved nodes must start before Mhesi a can make the correct decision about the transaction
and finish its startup.

Thus, Mhesi a (on one node) can hang if adouble fault occurs, that is, when two nodes crash simultaneously and one
attempts to start when the other refuses to start, for example, because of a hardware error.

Themaximumtimethat Mhesi a waitsfor other nodesto respond with atransaction recovery decision can be specified.
The configuration parameter max_wai t _f or _deci si on defaultsto i nfi ni ty, which can cause the indefinite
hanging as mentioned earlier. However, if the parameter is set to a definite time period (for example, three minutes),
Vhesi a then enforces a transaction recovery decision, if needed, to alow Mhesi a to continue with its startup
procedure.

The downside of an enforced transaction recovery decision isthat the decision can beincorrect, because of insufficient
information about the recovery decisions from the other nodes. This can result in an inconsistent database where
Mhesi a has committed the transaction on some nodes but terminated it on others.

In fortunate cases, the inconsistency is only visible in tables belonging to a specific application. However, if a
schematransaction isinconsistently recovered because of the enforced transaction recovery decision, the effects of the
inconsistency can befatal. However, if the higher priority isavailability rather than consistency, it can beworth therisk.

If Mhesi a detects an inconsistent transaction decision, an { i nconsi st ent _dat abase, bad_deci si on,
Node} system event is generated to give the application a chance to install a fallback or other appropriate measures
to resolve the inconsistency. The default behavior of the Mhesi a event handler isthe same asif the database became
inconsistent as aresult of partitioned network (as described earlier).

Ericsson AB. All Rights Reserved.: Mnesia | 55

1.7 Mnesia System Information

1.7.9 Backup, Restore, Fallback, and Disaster Recovery
The following functions are used to back up data, to install a backup as fallback, and for disaster recovery:

» mnesia:backup_checkpoint(Name, Opaque, [Mod]) performs a backup of the tables included in the checkpoint.

e mnesia:backup(Opaque, [Mod]) activates a new checkpoint that coversall Mhesi a tablesand
performs a backup. It is performed with maximum degree of redundancy (see also the function
mnesia: activate_checkpoint(Args), { max, MaxTabs} and {m n, M nTabs}).

* mnesia:traverse backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc) can be used to read an existing
backup, create a backup from an existing one, or to copy a backup from one type media to another.

e mnesia:uninstall_fallback() removes previoudly installed fallback files.
* mnesia:restore(Opaque, Args) restores a set of tables from a previous backup.

« mnesia:install_fallback(Opaque, [Mod]) can be configured to restart Mhesi a and the reload data tables,
and possibly the schema tables, from an existing backup. This function istypically used for disaster recovery
purposes, when data or schema tables are corrupted.

These functions are explained in the following sections. See also Checkpoints, which describes the two functions used
to activate and deactivate checkpoints.

Backup

Backup operation are performed with the following functions:

e mnesia:backup_checkpoint(Name, Opaque, [Mod])

* mnesia:backup(Opaque, [Mod])

* mnesia:traverse_backup(Source, [SourceMod,] Target, [TargetMod,] Fun, Acc)

By default, the actual access to the backup mediais performed through module mmesi a_backup for both read and
write. Currently mesi a_backup isimplemented with the standard library moduledi sc_| og. However, you can
write your own module with the same interface asrmesi a_backup and configure Mhesi a so that the aternative
module performs the actual accesses to the backup media. The user can therefore put the backup on a media that

Mhesi a doesnot know about, possibly on hosts where Erlang is not running. Use configuration parameter - nmesi a
backup_nodul e <nodul e> for this purpose.

The source for abackup is an activated checkpoint. The backup function mnesia: backup_checkpoint(Name, Opaque,
[Mod]) is most commonly used and returns ok or { er r or , Reason} . It has the following arguments:

* Nanme isthe name of an activated checkpoint. For details on how to include table names in checkpoints, see the
functionmesi a: acti vat e_checkpoi nt (ArgLi st) in Checkpoints.

e Opaque. Mnesi a does not interpret this argument, but it is forwarded to the backup module. The Mnesi a
default backup module mesi a_backup interprets this argument as alocal filename.

* Mbd isthe name of an alternative backup module.
The function mnesia:backup(Opaque [,Mod]) activates a new checkpoint that covers al Mhesi a tables with

maximum degree of redundancy and performs a