ERLANG

Common Test

Copyright © 2003-2019 Ericsson AB. All Rights Reserved.
Common Test 1.17.2.1
July 3, 2019

Copyright © 2003-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

July 3, 2019

1.1 Introduction

1 Common Test User's Guide

1.1 Introduction

1.1.1 Scope

Conmmon Test isaportable application for automated testing. It is suitable for:

» Black-box testing of target systems of any type (that is, not necessarily implemented in Erlang). Thisis performed
through standard O& M interfaces (such as SNMP, HTTP, CORBA, and Telnet) and, if necessary, through user-
specific interfaces (often called test ports).

e White-box testing of Erlang/OTP programs. Thisis easily done by calling the target API functions directly from
the test case functions.

Common Test aso integrates use of the OTP cover tool in application Tools for code coverage analysis of Erlang/
OTP programs.

Conmmon Test executestest suite programs automatically, without operator interaction. Test progress and results are
printedtologsin HTML format, easily browsed with astandard web browser. Conmon Test also sends notifications
about progress and results through an OTP event manager to event handlers plugged in to the system. Thisway, users
can integrate their own programs for, for example, logging, database storing, or supervision with Cormon Test .

Common Test provides libraries with useful support functions to fill various testing needs and requirements. There
is, for example, support for flexible test declarations through test specifications. There is also support for central
configuration and control of multiple independent test sessions (to different target systems) running in parallel.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.2 Common Test Basics
1.2.1 General

The Conmon Test framework is atool that supports implementation and automated execution of test cases to any
types of target systems. Conmon Test isthe main tool being used in al testing- and verification activities that are
part of Erlang/OTP system development and maintenance.

Test cases can be executed individually or in batches. Conmon Test also features a distributed testing mode with
central control and logging. With this feature, multiple systems can be tested independently in one common session.
Thisisuseful, for example, when running automated large-scale regression tests.

The System Under Test (SUT) can consist of one or more target nodes. Cormon Test contains ageneric test server
that, together with other test utilities, is used to perform test case execution. The tests can be started from a GUI,
from the OS shell, or from an Erlang shell. Test suites are files (Erlang modules) that contain the test cases (Erlang
functions) to be executed. Support modules provide functions that the test cases use to do the tests.

In a black-box testing scenario, Conmon Test -based test programs connect to the target system(s) through
standard O&M and CLI protocols. Common Test provides implementations of, and wrapper interfaces to, some
of these protocols (most of which exist as standalone components and applications in OTP). The wrappers simplify
configuration and add verbosity for logging purposes. Conmon Test is continously extended with useful support

Ericsson AB. All Rights Reserved.: Common Test | 1

1.2 Common Test Basics

modules. However, notice that it is a straightforward task to use any Erlang/OTP component for testing purposes with
Conmon Test , without needing a Conmon Test wrapper for it. It is as simple as calling Erlang functions. A
number of target-independent interfaces are supported in Cormon Test , such as Generic Telnet and FTP. These can
be specialized or used directly for controlling instruments, traffic load generators, and so on.

Common Test isalsoavery useful tool for white-box testing Erlang code (for example, module testing), as the test
programs can call exported Erlang functionsdirectly. Thereisvery little overhead required for implementing basic test
suites and executing simple tests. For black-box testing Erlang software, Erlang RPC and standard O&M interfaces
can be used for example.

A test case can handle several connectionsto one or more target systems, instruments, and traffic generatorsin parallel
to perform the necessary actions for atest. The handling of many connectionsin parallel is one of the major strengths
of Cormon Test , thanks to the efficient support for concurrency in the Erlang runtime system, which Conmon
Test users can take great advantage of.

1.2.2 Test Suite Organisation

Test suites are organized in test directories and each test suite can have a separate data directory. Typically, thesefiles
and directories are version-controlled similar to other forms of source code (possibly by aversion control system like
GIT or Subversion). However, Conrmon Test does not itself put any requirements on (or has any awareness of)
possible file and directory versions.

1.2.3 Support Libraries

Support libraries contain functions that are useful for all test suites, or for test suites in a specific functiona area or
subsystem. In addition to the general support libraries provided by the Cormon Test framework, and the various
libraries and applications provided by Erlang/OTP, there can also be a need for customized (user specific) support
libraries.

1.2.4 Suites and Test Cases

Testing is performed by running test suites (sets of test cases) or individual test cases. A test suiteisimplemented asan
Erlang modulenamed <sui t e_nane>_SUl TE. er | which containsanumber of test cases. A test caseisan Erlang
function that tests one or more things. The test caseisthe smallest unit that the Cormon Test test server dealswith.

Subsets of test cases, called test case groups, can also be defined. A test case group can have execution properties
associated with it. Execution properties specify if the test cases in the group are to be executed in random order, in
paralel, or in sequence, and if the execution of the group is to be repeated. Test case groups can also be nested (that
is, agroup can, besides test cases, contain subgroups).

Besides test cases and groups, the test suite can also contain configuration functions. These functions are meant to
be used for setting up (and verifying) environment and state in the SUT (and/or the Cormon Test host node),
required for the tests to execute correctly. Examples of operations are: Opening a connection to the SUT, initializing
a database, running an installation script, and so on. Configuration can be performed per suite, per test case group,
and per individual test case.

The test suite module must conform to a callback interface specified by the Conmron Test test server. For details,
see section Writing Test Suites.

A test case is considered successful if it returns to the caller, no matter what the returned value is. However, a few
return values have special meaning as follows:

* {ski p, Reason} indicatesthat the test case is skipped.
e {coment, Conment } printsacomment in thelog for the test case.
« {save_config, Confi g} makesthe Conmon Test test server pass Conf i g to the next test case.

2 | Ericsson AB. All Rights Reserved.: Common Test

1.2 Common Test Basics

A test case failure is specified as a runtime error (a crash), no matter what the reason for termination is. If you use
Erlang pattern matching effectively, you can take advantage of this property. The result is concise and readable test
case functions that ook much more like scripts than actual programs. A simple example:

session(Config) ->
{started,ServerId} = my server:start(),
{clients,[]} = my server:get clients(ServerId),
MyId = self(),
connected = my server:connect(Serverld, MyId),
{clients, [MyId]} = my server:get clients(ServerlId),
disconnected = my server:disconnect(ServerId, MyId),
{clients,[]} = my server:get clients(ServerId),
stopped = my server:stop(ServerId).

Asatest suiteruns, al information (including output to st dout) isrecorded in many different log files. A minimum
of information is displayed in the user console (only start and stop information, plus a note for each failed test case).

Theresult from each test caseisrecorded in adedicated HTML log file, created for the particul ar test run. An overview
page displays each test case represented by atable row showing total execution time, if the case was successful, failed,
or skipped, plus an optiona user comment. For a failed test case, the reason for termination is aso printed in the
comment field. The overview page has alink to each test caselog file, providing simple navigation with any standard
HTML browser.

1.2.5 External Interfaces

The Conmon Test test server requires that the test suite defines and exports the following mandatory or optional
callback functions:

all()

Returns alist of all test cases and groups in the suite. (Mandatory)
suite()

Information function used to return properties for the suite. (Optional)
groups()

For declaring test case groups. (Optional)
init_per_suite(Config)

Suite level configuration function, executed before the first test case. (Optional)
end_per_suite(Config)

Suite level configuration function, executed after the last test case. (Optional)
gr oup(G oupNarne)

Information function used to return properties for atest case group. (Optional)
init_per_group(G oupNane, Config)

Configuration function for a group, executed before the first test case. (Optional)
end_per _group(G oupNane, Config)

Configuration function for a group, executed after the last test case. (Optional)
init_per_testcase(Test Case, Config)

Configuration function for atestcase, executed before each test case. (Optional)

Ericsson AB. All Rights Reserved.: Common Test | 3

1.3 Getting Started

end_per _testcase(Test Case, Confi Q)

Configuration function for a testcase, executed after each test case. (Optional)
For each test case, the Conmron Test test server expects the following functions:
Testcasename()

Information function that returns alist of test case properties. (Optional)
Testcasename(Config)

The test case function.

1.3 Getting Started

1.3.1 Introduction for Newcomers

The purpose of this section is to let the newcomer get started in quickly writing and executing some first simple tests
with a"learning by example" approach. Most explanations are | eft for later sections. If you are not much into "learning
by example" and prefer more technical details, go ahead and skip to the next section.

This section demonstrates how simple it is to write a basic (yet for many module testing purposes, often sufficiently
complex) test suite and execute its test cases. This is not necessarily obvious when you read the remaining sections
in this User's Guide.

To understand what is discussed and examplified here, we recommended you to first read section Common Test
Basics.

1.3.2 Test Case Execution

Execution of test casesis handled as follows:

Figure 3.1: Successful and Unsuccessful Test Case Execution

For each test case that Conmon Test is ordered to execute, it spawns a dedicated process on which the test case
function starts running. (In parallel to the test case process, an idle waiting timer process is started, which is linked
to the test case process. If the timer process runs out of waiting time, it sends an exit signal to terminate the test case
process. Thisis called atimetrap).

In scenario 1, the test case process terminates normally after case A has finished executing its test code without
detecting any errors. The test case function returns avalue and Conmon Test logs the test case as successful.

In scenario 2, an error is detected during test case B execution. This causesthetest case B function to generate
an exception and, as a result, the test case process exits with reason other than normal. Cormon Test logs this as
an unsuccessful (Failed) test case.

As you can understand from the illustration, Conmron Test requires a test case to generate a runtime error to
indicate failure (for example, by causing abad match error or by callingexi t / 1, preferably through the help function
ct:fail/1, 2). A successful execution isindicated by anormal return from the test case function.

1.3.3 A Simple Test Suite

Asshown in section Common Test Basics, the test suite module implements callback functions (mandatory or optional)
for various purposes, for example:

4 | Ericsson AB. All Rights Reserved.: Common Test

1.3 Getting Started

» Init/end configuration function for the test suite

e |nit/end configuration function for atest case

e Init/end configuration function for atest case group

e Test cases

The configuration functions are optional. The following example is a test suite without configuration functions,
including one simple test case, to check that module mynod exists (that is, can be successfully loaded by the code
server):

-module(mylst SUITE).
-compile(export all).

all() ->
[mod exists].

mod exists() ->
{module,mymod} = code:load file(mymod).

If the operation fails, a bad match error occurs that terminates the test case.

1.3.4 A Test Suite with Configuration Functions

If you need to perform configuration operations to run your test, you can implement configuration functions in your
suite. The result from a configuration function is configuration data, or Conf i g. Thisis alist of key-value tuples
that get passed from the configuration function to the test cases (possibly through configuration functions on "lower
level"). The data flow looks as follows:

Figure 3.2: Configuration Data Flow in a Suite

The following example shows a test suite that uses configuration functions to open and close a log file for the test
cases (an operation that is unnecessary and irrelevant to perform by each test case):

-module(check log SUITE).
-export([all/0, init per suite/1, end per suite/1]).
-export([check restart result/1l, check no errors/1]).

-define(value(Key,Config), proplists:get value(Key,Config)).
all() -> [check restart result, check no errors].

init per suite(InitConfigData) ->
[{logref,open_log()} | InitConfigData].

end per suite(ConfigData) ->
close log(?value(logref, ConfigData)).

check restart result(ConfigData) ->
TestData = read log(restart, ?value(logref, ConfigData)),
{match, Line} = search for("restart successful", TestData).

check no _errors(ConfigData) ->
TestData = read log(all, ?value(logref, ConfigData)),
case search for("error", TestData) of
{match,Line} -> ct:fail({error found in log,Line});
nomatch -> ok
end.

Ericsson AB. All Rights Reserved.: Common Test | 5

1.3 Getting Started

The test cases verify, by parsing alog file, that our SUT has performed a successful restart and that no unexpected
errors are printed.

To execute the test cases in the recent test suite, type the following on the UNIX/Linux command line (assuming that
the suite module is in the current working directory):

$ ct run -dir

or:

$ ct run -suite check log SUITE

To use the Erlang shell to run our test, you can evaluate the following call:

1> ct:run_test([{dir, "."}1).

or:

1> ct:run test([{suite, "check log SUITE"}]).

The result from running the test is printed in log filesin HTML format (stored in unique log directories on a different
level). The following illustration shows the log file structure:

Figure 3.3: HTML Log File Structure

1.3.5 Questions and Answers

Here follows some questions that you might have after reading this section with corresponding tips and links to the
answers:

e Question: "How and where can | specify variable datafor my tests that must not be hard-coded in the test suites
(such as hostnames, addresses, and user login data)?*

Answer: See section External Configuration Data.

e Question: "Isthere away to declare different tests and run them in one session without having to write my own
scripts? Also, can such declarations be used for regression testing?”

Answer: See section Test Specifications in section Running Tests and Analyzing Resullts.
e Question: "Can test cases and/or test runs be automatically repeated?’

Answer: Learn more about Test Case Groups and read about start flags/options in section Running Tests and in
the Reference Manual.

* Question: "Does Conmon Test execute my test cases in sequence or in parallel?”

Answer: See Test Case Groupsin section Writing Test Suites.
e Question: "What is the syntax for timetraps (mentioned earlier), and how do | set them?"

Answer: Thisis explained in the Timetrap Time-Outs part of section Writing Test Suites.
e Question: "What functions are available for logging and printing?"

Answer: See Logging in section Writing Test Suites.
e Question: "I need data files for my tests. Where do | store them preferably?”

Answer: See Data and Private Directories.

6 | Ericsson AB. All Rights Reserved.: Common Test

1.4 Installation

* Question: "Can | start with atest suite example, please?'
Answer: Welcome!

You probably want to get started on your own first test suites now, while at the same time digging deeper into the
Common Test User's Guide and Reference Manual. There are much more to learn about the things that have been
introduced in this section. There are also many other useful featuresto learn, so please continue to the other sections
and have fun.

1.4 Installation

1.4.1 General Information

The two main interfaces for running tests with Common Test are an executable program named ct _r un and the
Erlang modulect . ct _r un iscompiled for the underlying operating system (for example, Unix/Linux or Windows)
during the build of the Erlang/OTP system, and is installed automatically with other executable programs in the top
level bi n directory of Erlang/OTP. Thect interfacefunctions can be called from the Erlang shell, or from any Erlang
function, on any supported platform.

TheCommon Test application isinstalled with the Erlang/OTP system. No extrainstallation step is required to start
using Cormon Test through thect _r un executable program, and/or the interface functionsin the ct module.

1.5 Writing Test Suites
1.5.1 Support for Test Suite Authors

Thect module provides the main interface for writing test cases. Thisincludes for example, the following:

* Functionsfor printing and logging

» Functions for reading configuration data

e Function for terminating atest case with error reason

* Function for adding comments to the HTML overview page

For details about these functions, see modulect .

The Cormon Test application also includes other modules named ¢t _<conponent >, which provide various
support, mainly simplified use of communication protocols such as RPC, SNMP, FTP, Telnet, and others.

1.5.2 Test Suites

A test suite is an ordinary Erlang module that contains test cases. It is recommended that the module has a name on
theform * _SUI TE. er | . Otherwise, the directory and auto compilation function in Conmon Test cannot locate
it (at least not by default).

It isaso recommended that thect . hr| header fileisincluded in all test suite modules.

Each test suite module must export function al | / 0, which returns the list of all test case groups and test cases to
be executed in that module.

The callback functions to be implemented by the test suite are all listed in module common_test . They are aso
described in more detail later in this User's Guide.

1.5.3 Init and End per Suite

Each test suite module can contain the optional configuration functions init _per _suite/1 and
end_per _sui t e/ 1. If theinit function is defined, so must the end function be.

Ericsson AB. All Rights Reserved.: Common Test | 7

1.5 Writing Test Suites

Ifi nit_per_suiteexists, itiscaledinitialy beforethetest cases are executed. It typically containsinitializations
common for al test casesin the suite, which are only to be performed once.i ni t _per _sui t e isrecommended for
setting up and verifying state and environment on the System Under Test (SUT) or the Conmron Test host node, or
both, sothat thetest casesin the suite executes correctly. Thefollowing areexamplesof initial configuration operations:
e Opening a connection to the SUT

* Initializing a database

e Running an installation script

end_per _sui t e iscaled as the fina stage of the test suite execution (after the last test case has finished). The
function is meant to be used for cleaning up afteri nit _per _suite.

init_per_suiteandend _per_suit e execute on dedicated Erlang processes, just like the test cases do. The
result of these functionsis however not included in the test run statistics of successful, failed, and skipped cases.

Theargument toi ni t _per _sui te isConfi g, that is, the same key-value list of runtime configuration data that
each test case takes asinput argument. i ni t _per _sui t e can modify this parameter with information that the test
cases need. The possibly modified Conf i g list isthe return value of the function.

Ifi nit_per_suit e fals, al test casesin thetest suite are skipped automatically (so called auto skipped), including
end_per _suite.

Notice that if i nit _per _suite and end_per _sui t e do not exist in the suite, Common Test calls dummy
functions (with the same names) instead, so that output generated by hook functions can be saved to the log files for
these dummies. For details, see Common Test Hooks.

1.5.4 Init and End per Test Case

Each test suite module can contain the optional configuration functions i nit_per testcase/2 and
end_per _test case/ 2. If theinit function is defined, so must the end function be.

Ifinit_per_testcase exists, itiscaled before each test case in the suite. It typically contains initialization that
must be done for each test case (analogtoi ni t _per _sui t e for the suite).

end_per testcase/ 2 iscaled after each test case hasfinished, enabling cleanup afteri ni t _per _t est case.

The first argument to these functions is the name of the test case. This value can be used with pattern matching in
function clauses or conditional expressions to choose different initialization and cleanup routines for different test
cases, or perform the same routine for many, or all, test cases.

The second argument is the Conf i g key-value list of runtime configuration data, which has the same value as the
listreturned by i nit _per _suite.init_per_testcase/ 2 can modify this parameter or returnit "asis'. The
return valueof i ni t _per _t est case/ 2 ispassed as parameter Conf i g to the test case itself.

The return value of end_per _t est case/ 2 isignored by the test server, with exception of the save_confi g
andf ail tuple.

end_per _t est case can check if the test case was successful. (which in turn can determine how cleanup is to
be performed). This is done by reading the value tagged with t c_st at us from Conf i g. The value is one of the
following:

« ok
« {failed, Reason}

where Reason isti netrap_ti meout , information fromexi t/ 1, or details of aruntime error
» {ski pped, Reason}

where Reason is auser-specific term

Function end_per_testcase/2 is even caled if a test case terminates because of a cal to
ct:abort_current _testcase/ 1,orafter atimetraptime-out. However,end_per _t est case then executes

8 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

on adifferent process than the test case function. In this situation, end_per _t est case cannot change the reason
for test case termination by returning { f ai | , Reason} or save datawith{ save_confi g, Dat a}.

The test case is skipped in the following two cases:

« Ifinit_per_testcase crashes(caled auto skipped).
« Ifinit_per_testcasereturnsatuple{ski p, Reason} (caled user skipped).

The test case can also be marked as failed without executing it by returning a tuple {f ai | , Reason} from
i nit_per_testcase.

If init_per_testcase crashes, or returns {skip, Reason} or {fail, Reason}, function
end_per _t est case isnot called.

If it isdetermined during execution of end_per _t est case that the status of a successful test caseisto be changed
tofailed, end_per _t est case canreturnthetuple{f ai | , Reason} (where Reason describeswhy thetest case
fails).

Asinit_per_testcaseandend per _t est case executeonthesameErlang processasthetest case, printouts
from these configuration functions are included in the test case log file.

1.5.5 Test Cases

The smallest unit that the test server is concerned with isatest case. Each test case can test many things, for example,
make several callsto the same interface function with different parameters.

The author can choose to put many or few tests into each test case. Some things to keep in mind follows:

e Many small test cases tend to result in extra, and possibly duplicated code, aswell as slow test execution because
of large overhead for initializations and cleanups. Avoid duplicated code, for example, by using common help
functions. Otherwise, the resulting suite becomes difficult to read and understand, and expensive to maintain.

* Larger test cases make it harder to tell what went wrong if it fails. Also, large portions of test code risk being
skipped when errors occur.

« Readability and maintainability suffer when test cases become too large and extensive. It is not certain that the
resulting log files reflect very well the number of tests performed.

The test case function takes one argument, Conf i g, which contains configuration information such asdat a_di r
andpri v_di r. (For details about these, see section Data and Private Directories. The value of Conf i g at thetime
of the call, isthe same asthe return valuefromi ni t _per t est case, mentioned earlier.

Thetest case function argument Conf i g isnot to be confused with the information that can be retrieved from the
configuration files (using ct: get_confi g/ 1/ 2). The test case argument Conf i g isto be used for runtime
configuration of the test suite and the test cases, while configuration files are to contain data related to the SUT.
These two types of configuration data are handled differently.

As parameter Confi g is a list of key-value tuples, that is, a data type caled a property list, it can be
handled by the propli sts module. A value can, for example, be searched for and returned with function
proplists: get_val ue/ 2. Also, or dternatively, the general |i sts module contains useful functions.
Normally, the only operations performed on Conf i g is insert (adding a tuple to the head of the list) and lookup.
Common Test provides a simple macro named ?conf i g, which returns a value of an item in Conf i g given the
key (exactly likepr opl i sts: get _val ue). Example: Pri vDir = ?config(priv_dir, Config).

Ericsson AB. All Rights Reserved.: Common Test | 9

1.5 Writing Test Suites

If the test case function crashes or exits purposely, it is considered failed. If it returns a value (no matter what value),
it is considered successful. An exception to this rule is the return value { ski p, Reason} . If thistuple is returned,
thetest caseis considered skipped and islogged as such.

If the test case returns the tuple { comrent , Comment } , the caseis considered successful and Commrent is printed
in the overview log file. Thisisequal to calling ct : comment (Comrment) .

1.5.6 Test Case Information Function

For each test case function there can be an extra function with the same name but without arguments. Thisis the test
case information function. It is expected to return a list of tagged tuples that specifies various properties regarding
the test case.

The following tags have special meaning:
timetrap

Sets the maximum time the test case is allowed to execute. If thistime is exceeded, the test case fails with reason
timetrap_tineout. Noticethatinit_per _testcase and end_per _t estcase areincluded in the
timetrap time. For details, see section Timetrap Time-Outs.

user dat a

Specifies any data related to the test case. This data can be retrieved at any time using the ct : user dat a/ 3
utility function.

sil ent _connecti ons
For details, see section Slent Connections.
require

Specifies configuration variables required by the test case. If the reguired configuration variables are not found
in any of the test system configuration files, the test case is skipped.

A required variable can also be given adefault valueto be used if thevariableisnot found in any configurationfile.
To specify adefault value, add atupleontheform { def aul t _confi g, Confi gVari abl eNane, Val ue}
to the test case information list (the position in thelist isirrelevant).

Examples:

testcasel() ->
[{require, ftp},
{default config, ftp, [{ftp, "my ftp host"},
{username, "aladdin"},
{password, "sesame"}1}}].

testcase2() ->
[{require, unix_telnet, unix},
{require, {unix, [telnet, username, password]}},
{default config, unix, [{telnet, "my telnet host"},
{username, "aladdin"},
{password, "sesame"}1}}1.

For more information about r equi r e, see section Requiring and Reading Configuration Data in section External
Configuration Data and functionct : requi re/ 1/ 2.

10 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

Specifying a default value for arequired variable can result in atest case always getting executed. This might not
be a desired behavior.

Ifti metraporrequire,orboth, isnot set specifically for aparticular test case, default values specified by function
sui t e/ 0 areused.

Tags other than the earlier mentioned are ignored by the test server.
An example of atest case information function follows:

reboot node() ->
[
{timetrap, {seconds,60}},
{require,interfaces},
{userdata,
[{description, "System Upgrade: RpuAddition Normal RebootNode"},
{fts,"http://someserver.ericsson.se/test doc4711.pdf"}]1}

1.5.7 Test Suite Information Function

Functionsui t e/ 0 can, for example, beusedin atest suite moduleto set adefaultt i met r ap valueandtor equi r e
external configuration data. If atest case, or agroup information function also specifies any of the information tags, it
overrides the default values set by sui t e/ 0. For details, see Test Case Information Function and Test Case Groups.

The following options can also be specified with the suite information list:

« styl esheet, see HTML Style Sheets
e userdat a, see Test Case Information Function
* silent_connections, see Slent Connections

An example of the suite information function follows:

suite() ->
[
{timetrap, {minutes,10}},
{require,global names},
{userdata, [{info, "This suite tests database transactions."}1},
{silent_connections, [telnet]},
{stylesheet,"db testing.css"}
1.

1.5.8 Test Case Groups

A test case group is a set of test cases sharing configuration functions and execution properties. Test case groups are
defined by function gr oups/ 0 according to the following syntax:

Ericsson AB. All Rights Reserved.: Common Test | 11

1.5 Writing Test Suites

groups() -> GroupDefs
Types:

GroupDefs = [GroupDef]

GroupDef = {GroupName,Properties,GroupsAndTestCases}

GroupName = atom()

GroupsAndTestCases = [GroupDef | {group,GroupName} | TestCase |
{testcase,TestCase, TCRepeatProps}]

TestCase = atom()

TCRepeatProps = [{repeat,N} | {repeat until ok,N} | {repeat until fail,N}]

Gr oupNan® is the name of the group and must be unique within the test suite module. Groups can be nested, by
including a group definition within the G oupsAndTest Cases list of another group. Pr operti es isthelist of
execution properties for the group. The possible values are as follows:

Properties = [parallel | sequence | Shuffle | {GroupRepeatType,N}]

Shuffle = shuffle | {shuffle,Seed}

Seed = {integer(),integer(),integer()}

GroupRepeatType = repeat | repeat until all ok | repeat until all fail |
repeat until any ok | repeat until any fail

N = integer() | forever

Explanations:
paral | el

Conmon Test executesall test casesin the group in parallel.
sequence

The cases are executed in a sequence as described in section Sequences in section Dependencies Between Test
Cases and Suites.

shuffle
The cases in the group are executed in random order.
repeat, repeat_until _*

Orders Conmon Test to repeat execution of all the cases in the group a given number of times, or until any,
or dl, casesfail or succeed.

Example:

groups() -> [{groupl, [parallel], [testla,testlb]},
{group2, [shuffle,sequence], [test2a,test2b,test2c]}].

To specify inwhich order groups are to be executed (al so with respect to test casesthat are not part of any group), add
tuples on theform { gr oup, G oupNane} totheal | / 0 list.

Example:

all() -> [testcasel, {group,groupl}, {testcase,testcase2,[{repeat,10}1}, {group,group2}].

Execution properties with agroup tupleinal | / 0: { gr oup, G- oupNane, Properti es} can aso be specified.
These properties override those specified in the group definition (see gr oups/ 0 earlier). This way, the same set of
tests can be run, but with different properties, without having to make copies of the group definition in question.

12 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

If a group contains subgroups, the execution properties for these can aso be specified in the
group tuple: {group, G oupName, Properties, SubG oups} Where, SubG oups is a list of tuples,
{ G oupNane, Properties} or{ G oupNare, Properties, SubG oups} representing the subgroups. Any
subgroups defined in gr oup/ O for a group, that are not specified in the SubG oups list, executes with their
predefined properties.

Example:

groups() -> {testsl, [1, [{tests2, [], [t2a,t2b]},
{tests3, [1, [t31,t3b]}]}.

To execute group t est s1 twice with different propertiesfor t est s2 each time:

all() ->
[{group, testsl, default, [{tests2, [parallell}l},
{group, testsl, default, [{tests2, [shuffle,{repeat,10}]1}1}1].

Thisis equivalent to the following specification:

all() ->
[{group, testsl, default, [{tests2, [parallel]},
{tests3, default}]},
{group, testsl, default, [{tests2, [shuffle,{repeat,10}1},
{tests3, default}]}].

Valuedef aul t statesthat the predefined properties are to be used.
The following example shows how to override properties in a scenario with deeply nested groups:

groups() ->
[{testsl, [], [{group, tests2}]},
{tests2, [], [{group, tests3}]},
{tests3, [{repeat,2}], [t3a,t3b,t3cl}].

all() ->
[{group, testsl, default,
[{tests2, default,
[{tests3, [parallel,{repeat,100}1}1}1}1].

The described syntax can also be used in test specifications to change group properties at the time of execution,
without having to edit the test suite. For more information, see section Test Specifications in section Running Tests
and Analyzing Results.

As illustrated, properties can be combined. If, for example, shuffl e, repeat _until _any fail, and
sequence are all specified, the test casesin the group are executed repeatedly, and in random order, until atest case
fails. Then execution isimmediately stopped and the remaining cases are skipped.

Before execution of a group begins, the configuration functioni ni t _per _group(G oupNanme, Config) is
called. Thelist of tuplesreturned from thisfunction ispassed to thetest casesin the usual manner by argument Conf i g.
i nit_per _group/ 2ismeantto beused for initializations common for the test cases in the group. After execution
of the group isfinished, functionend_per _group(GroupNanme, Confi g) iscaled. Thisfunctionis meant to
be used for cleaning up after i ni t _per _gr oup/ 2. If theinit function is defined, so must the end function be.

Whenever a group is executed, if i nit _per _group and end_per _group do not exist in the suite, Cormon
Test calls dummy functions (with the same names) instead. Output generated by hook functions are saved to the log
files for these dummies. For more information, see section Manipulating Tests in section Common Test Hooks.

Ericsson AB. All Rights Reserved.: Common Test | 13

1.5 Writing Test Suites

init_per_testcase/2 and end_per _testcase/ 2 are aways called for each individua test case, no
matter if the case belongs to a group or not.

The properties for a group are always printed in the top of the HTML log for i ni t _per _gr oup/ 2. The total
execution time for agroup isincluded at the bottom of the log for end_per _gr oup/ 2.

Test case groups can be nested so sets of groups can be configured with the same i nit _per group/ 2 and
end_per _group/ 2 functions. Nested groups can be defined by including a group definition, or a group name
reference, in the test case list of another group.

Example:

groups() -> [{groupl, [shuffle], [testla,
{group2, [], [test2a,test2b]},
testlbl]},
{group3, [1, [{group,group4d},
{group,group5}1},
{group4, [parallell], [test4da,testdb]},
{group5, [sequence], [test5a,test5b,test5c]}].

In the previous example, if all/ 0O returns group name references in the order [{group, groupl},
{group, group3}], the order of the configuration functions and test cases becomes the following (notice that
init_per_testcase/2andend_per _testcase/2: areasoawayscalled, but not included in thisexample
for simplification):

init per group(groupl, Config) -> Configl (*)
testla(Configl)
init per group(group2, Configl) -> Config2
test2a(Config2), test2b(Config2)
end per _group(group2, Config2)
testlb(Configl)
end per _group(groupl, Configl)
init per group(group3, Config) -> Config3
init per group(group4, Config3) -> Config4
test4a(Config4), testdb(Config4) (**)
end _per _group(group4, Config4)
init per group(group5, Config3) -> Config5
test5a(Config5), test5b(Config5), test5c(Config5)
end_per_group(group5, Config5)
end per_group(group3, Config3)

(*) The order of test caset est 1a,t est 1b, and gr oup?2 isundefined, asgr oupl has a shuffle property.
(**) These cases are not executed in order, but in paralléel.

Properties are not inherited from top-level groups to nested subgroups. For instance, in the previous example, the test
casesin gr oup?2 are not executed in random order (which isthe property of gr oup1l).

1.5.9 Parallel Property and Nested Groups

If a group has a parallel property, its test cases are spawned simultaneously and get executed in parallel. However,
atest caseis not allowed to execute in parallel with end_per _gr oup/ 2, which means that the time to execute a
parallel group is equal to the execution time of the slowest test case in the group. A negative side effect of running
test casesin parallel isthat the HTML summary pages are not updated with links to the individual test case logs until
functionend_per _gr oup/ 2 for the group has finished.

14 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

A group nested under a parallel group starts executing in parallel with previous (parallel) test cases (no matter what
properties the nested group has). However, as test cases are never executed in parallel withi nit _per _group/ 2
orend_per _group/ 2 of the same group, it is only after a nested group has finished that remaining parallel cases
in the previous group become spawned.

1.5.10 Parallel Test Cases and I/O

A parallel test case has a private I/O server as its group leader. (For a description of the group leader concept, see
ERTS). The central 1/0 server process, which handles the output from regular test cases and configuration functions,
does not respond to 1/0 messages during execution of parallel groups. Thisisimportant to understand to avoid certain
traps, like the following:

If aprocess, P, is spawned during execution of, for example, i nit _per _sui t e/ 1, it inherits the group leader of
theinit _per _suite process. This group leader is the central 1/0 server process mentioned earlier. If, at alater
time, during parallel test case execution, some event triggers process Pto call i o: f or mat / 1/ 2, that call never
returns (as the group leader isin anon-responsive state) and causes P to hang.

1.5.11 Repeated Groups

A test case group can be repeated a certain number of times (specified by an integer) or indefinitely (specified
by f or ever). The repetition can aso be stopped too early if any or all cases fail or succeed, that is, if any
of the properties repeat _until _any fail, repeat_until _any ok, repeat _until _all _fail, or
repeat _until _all _ok isused. If the basic r epeat property is used, status of test casesis irrelevant for the
repeat operation.

The status of asubgroup can bereturned (ok or f ai | ed), to affect the execution of the group on thelevel above. This
is accomplished by, in end_per _gr oup/ 2, looking up the value of t c_gr oup_properti es inthe Confi g
list and checking the result of the test casesin the group. If statusf ai | ed isto be returned from the group as aresult,
end_per _group/ 2 isto return the value {ret urn_group_resul t, fai | ed}. The status of a subgroup is
taken into account by Common Test when evaluating if execution of a group is to be repeated or not (unless the
basicr epeat property isused).

Thevalueoft c_gr oup_properti es isalist of statustuples, each with thekey ok, ski pped, andf ai | ed. The
value of astatustupleisalist with names of test cases that have been executed with the corresponding status as resullt.

Thefollowing is an example of how to return the status from a group:

end per _group(Group, Config) ->
Status = ?config(tc _group result, Config),
case proplists:get value(failed, Status) of

[1 -> % no failed cases
{return _group result,ok};
_Failed -> % one or more failed

{return_group result, failed}
end.

It is aso possible, in end_per _gr oup/ 2, to check the status of a subgroup (maybe to determine what status the
current group isto return). Thisisas simple asillustrated in the previous example, only the group nameis stored in a
tuple{ gr oup_resul t, G oupNane}, which can be searched for in the status lists.

Example:

Ericsson AB. All Rights Reserved.: Common Test | 15

1.5 Writing Test Suites

end per _group(groupl, Config) ->
Status = ?config(tc_group result, Config),
Failed = proplists:get value(failed, Status),
case lists:member({group result,group2}, Failed) of
true ->
{return_group result, failed};
false ->
{return_group result,ok}
end;

Note:

When atest case group isrepeated, the configuration functionsi ni t _per _group/ 2 andend_per _group/ 2
are also always called with each repetition.

1.5.12 Shuffled Test Case Order

The order in which test casesin a group are executed is under normal circumstances the same as the order specified
in the test case list in the group definition. With property shuf f | e set, however, Conmon Test instead executes
the test casesin random order.

Y ou can provide a seed value (atuple of three integers) with the shuffle property { shuf f | e, Seed} . Thisway, the
same shuffling order can be created every time the group is executed. If no seed value is specified, Contron Test
creates a "random" seed for the shuffling operation (using the return value of er | ang: t i mest anp/ 0). The seed
value is always printed to thei ni t _per _group/ 2 log file so that it can be used to recreate the same execution
order in a subsequent test run.

| If ashuffled test case group is repeated, the seed is not reset between turns.

If asubgroup is specified in agroup with ashuf f | e property, the execution order of this subgroup in relation to the
test cases (and other subgroups) in the group, is random. The order of the test cases in the subgroup is however not
random (unless the subgroup hasashuf f | e property).

1.5.13 Group Information Function

Thetest case group information function, gr oup(G- oupNan®) , serves the same purpose as the suite- and test case
information functions previously described. However, the scope for the group information function, is all test cases
and subgroupsin the group in question (G- oupNane).

Example:

group(connection tests) ->
[{require,login data},
{timetrap,1000}].

The group information properties override those set with the suite information function, and can in turn be overridden
by test case information properties. For alist of valid information properties and more general information, see the
Test Case Information Function.

16 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

1.5.14 Information Functions for Init- and End-Configuration

Information functions can also be used for functionsi nit _per _suite,end_per _suite,init_per_group,
and end_per _gr oup, and they work the same way as with the Test Case Information Function. Thisis useful, for
example, for setting timetraps and requiring external configuration data relevant only for the configuration function
in question (without affecting properties set for groups and test cases in the suite).

The information function init/end_per_suite() is caled for init/end_per_suite(Config),
and information function i nit/end_per_group(G oupNane) is cdled for init/
end_per _group(G oupNane, Confi g). However, information functions cannot be used with init/
end_per _testcase(Test Case, Confi g), asthese configuration functions execute on the test case process
and use the same properties as the test case (that is, the properties set by the test case information function,
Test Case()). Foralist of valid information properties and more general information, seethe Test Case Information
Function.

1.5.15 Data and Private Directories

In the data directory, dat a_di r, the test module has its own files needed for the testing. The name of dat a_di r

is the the name of the test suite followed by " _dat a" . For example, " sone_pat h/ f oo_SUl TE. beant' hasthe
datadirectory " sone_pat h/ f oo_SUl TE dat a/ " . Usethisdirectory for portability, that is, to avoid hardcoding
directory namesin your suite. As the data directory is stored in the same directory as your test suite, you can rely on
its existence at runtime, even if the path to your test suite directory has changed between test suite implementation
and execution.

priv_dir istheprivatedirectory for the test cases. Thisdirectory can be used whenever atest case (or configuration
function) needs to write something to file. The name of the private directory is generated by Conmon Test , which
also creates the directory.

By default, Cormon Test createsonecentral private directory per test run, shared by all test cases. Thisisnot aways
suitable. Especialy if the same test cases are executed multiple times during atest run (that is, if they belong to atest
case group with property r epeat) and thereis arisk that filesin the private directory get overwritten. Under these
circumstances, Conmon Test can be configured to create one dedicated private directory per test case and execution
instead. This is accomplished with the flag/optioncr eat e_pri v_di r (to be used withthect _r un program, the
ct:run_test/ 1 function, or astest specification term). There are three possible values for this option as follows:

e auto_per_run

e auto_per_tc

e manual per _tc

The first value indicates the default pri v_di r behavior, that is, one private directory created per test run. The two
latter values tell Conmon Test to generate a unique test directory name per test case and execution. If the auto
version is used, all private directories are created automatically. This can become very inefficient for test runs with

many test cases or repetitions, or both. Therefore, if the manual version isused instead, the test case must tell Conmon
Test tocreatepri v_di r whenit needsit. It does this by calling the function ct : make_priv_dir/O0.

Do not depend on the current working directory for reading and writing datafiles, asthisisnot portable. All scratch
files are to be written in the pri v_di r and all data files are to be located in dat a_di r . Also, the Cormon
Test server setsthe current working directory to the test case log directory at the start of every case.

Ericsson AB. All Rights Reserved.: Common Test | 17

1.5 Writing Test Suites

1.5.16 Execution Environment

Each test case is executed by a dedicated Erlang process. The process is spawned when the test case
starts, and terminated when the test case is finished. The configuration functions i nit _per testcase and
end_per _t est case execute on the same process as the test case.

Theconfiguration functionsi ni t _per _suiteandend_per _sui t e execute, liketest cases, on dedicated Erlang
processes.

1.5.17 Timetrap Time-Outs

The default time limit for a test case is 30 minutes, unless at i net r ap is specified either by the suite-, group-,
or test case information function. The timetrap time-out value defined by suit e/ 0 is the value that is used
for each test case in the suite (and for the configuration functionsi ni t _per _suite/ 1, end_per_suite/ 1,
i nit_per_group/2,andend_per _group/ 2). A timetrap value defined by gr oup(G oupNane) overrides
onedefined by sui t e() andisused for each test casein group G- oupNare, and any of its subgroups. If atimetrap
value is defined by gr oup/ 1 for a subgroup, it overrides that of its higher level groups. Timetrap values set by
individual test cases (by the test case information function) override both group- and suite- level timetraps.

A timetrap can also be set or reset dynamically during the execution of atest case, or configuration function. Thisis
doneby callingct : ti met rap/ 1. Thisfunction cancels the current timetrap and starts a new one (that stays active
until time-out, or end of the current function).

Timetrap values can be extended with a multiplier value specified at startup with optionmul ti ply_ti netraps.
It isalso possible to let the test server decide to scale up timetrap time-out values automatically. That is, if tools such
ascover ortrace are running during the test. This feature is disabled by default and can be enabled with start
optionscal e_ti netraps.

If atest case needs to suspend itself for atime that also gets multipled by nul ti pl y_ti netraps (and possibly
asoscadedupif scal e_ti netraps isenabled), thefunctionct : sl eep/ 1 can be used (instead of, for example,
tinmer:sleep/l).

A function (f un/ 0 or { Mod, Func, Args} (MFA) tuple) can be specified as timetrap value in the suite-, group-
and test case information function, and as argument to functionct : ti met r ap/ 1.

Examples:

{tinetrap,{ny_test _utils,tinetrap,[?MODULE, systemstart]}}
ct:timetrap(fun() -> nmy_timetrap(TestCaseNane, Config) end)
The user timetrap function can be used for two things as follows:

e Toact asatimetrap. Thetime-out is triggered when the function returns.
e Toreturn atimetrap time value (other than afunction).

Before execution of the timetrap function (which is performed on a parallel, dedicated timetrap process), Conmon
Test cancels any previously set timer for the test case or configuration function. When the timetrap function
returns, the time-out is triggered, unless the return value is a valid timetrap time, such as an integer, or a
{SecM nOr Hour Tag, Ti ne} tuple (for details, see module common_test). If a time value is returned, a new
timetrap is started to generate a time-out after the specified time.

The user timetrap function can return a time value after a delay. The effective timetrap time is then the delay time
plusthe returned time.

1.5.18 Logging - Categories and Verbosity Levels
Common Test provides the following three main functions for printing strings:
e ct:log(Category, Inportance, Format, FormatArgs, Opts)

18 | Ericsson AB. All Rights Reserved.: Common Test

1.5 Writing Test Suites

e ct:print(Category, Inportance, Format, FornmatArgs)
e ct:pal (Category, Inportance, Format, FornmatArgs)

Thel og/ 1, 2, 3, 4, 5 function prints a string to the test case log file. The pri nt/ 1, 2, 3, 4 function prints the
stringtoscreen. Thepal / 1, 2, 3, 4 function printsthe samestring both to file and screen. Thefunctionsare described
in module ct.

The optional Cat egor y argument can be used to categorize the log printout. Categories can be used for two things
asfollows:

* To compare the importance of the printout to a specific verbosity level.
« Toformat the printout according to a user-specific HTML Style Sheet (CSS).

Argument | npor t ance specifies alevel of importance that, compared to a verbosity level (general and/or set per
category), determines if the printout is to be visible. | nport ance is any integer in the range 0..99. Predefined
constants exist in the ct . hr| header file. The default importance level, ?STD | MPORTANCE (used if argument
| mpor t ance isnot provided), is 50. Thisis aso the importance used for standard /O, for example, from printouts
madewithi o: format/ 2,i o: put _chars/ 1, and so on.

| mpor t ance is compared to a verbosity level set by the ver bosi ty start flag/option. The level can be set per
category or generally, or both. If ver bosi t y isnot set by the user, alevel of 100 (?MAX_VERBOSI TY =all printouts
visible) isused as default value. Conmron Test performs the following test:

Importance >= (100-VerbositylLevel)

The constant ?STD_VERBOSI TY hasvalue 50 (seect . hr 1). At thislevel, all standard 1/O gets printed. If alower
verbosity level is set, standard /O printouts are ignored. Verbosity level O effectively turns al logging off (except
from printouts made by Conmon Test itsdlf).

The general verbosity level isnot associated with any particular category. Thislevel setsthe threshold for the standard
I/O printouts, uncategorized ct : | og/ pri nt/ pal printouts, and printouts for categories with undefined verbosity
level.

Examples:
Some printouts during test case execution:

io:format("1l. Standard I0, importance = ~w~n", [?STD_ IMPORTANCE]),
ct:log("2. Uncategorized, importance = ~w", [?STD IMPORTANCE]),

ct:log(info, "3. Categorized info, importance = ~w", [?STD IMPORTANCE]),

ct:log(info, ?LOW IMPORTANCE, "4. Categorized info, importance = ~w", [?LOW IMPORTANCE]),
ct:log(error, ?HI IMPORTANCE, "5. Categorized error, importance = ~w", [?HI IMPORTANCE]),
ct:log(error, ?MAX IMPORTANCE, "6. Categorized error, importance = ~w", [?MAX IMPORTANCE]),

If starting the test with a general verbosity level of 50 (?STD_VERBOSI TY):

$ ct run -verbosity 50

the following is printed:

1. Standard I0, importance = 50

2. Uncategorized, importance = 50

3. Categorized info, importance = 50
5. Categorized error, importance = 75
6. Categorized error, importance = 99

If starting the test with:

Ericsson AB. All Rights Reserved.: Common Test | 19

1.5 Writing Test Suites

$ ct _run -verbosity 1 and info 75
the following is printed:
3. Categorized info, importance = 50

4. Categorized info, importance = 25
6. Categorized error, importance = 99

Note that the category argument is not required in order to only specify the importance of a printout. Example:

ct:pal(?LOW_IMPORTANCE, "Info report: ~p", [Info])

Or perhaps in combination with constants:

-define(INFO, ?LOW_IMPORTANCE).
-define(ERROR, ?HI IMPORTANCE).

ct:log(?INFO, "Info report: ~p", [Info])
ct:pal(?ERROR, "Error report: ~p", [Error])

Thefunctionsct : set _verbosity/2 andct: get verbosity/ 1 may be used to modify and read verbosity
levels during test execution.

Thearguments For mat and For mat Argsinct : | og/ pri nt/ pal areawayspassed ontothe STDLIB function
i o: format/ 3 (For details, seethei o manua page).

ct:pal/4 andct: | og/5 add headers to strings being printed to the log file. The strings are also wrapped in div

tags with a CSS class attribute, so that stylesheet formatting can be applied. To disable this feature for a printout (i.e.
to get aresult similar tousingi o: f or mat / 2), call ct : | og/ 5 withtheno_css option.

How categories can be mapped to CSS tags is documented in section HTML Style Sheets in section Running Tests
and Analyzing Results.

Common Test will escape special HTML characters (<, >and &) in printoutsto thelog file madewith ct : pal / 4 and
i o: fornmat/ 2. Inordertoprint stringswith HTML tagstothelog, usethect : | og/ 3, 4, 5 function. The character
escaping feature is per default disabled for ct : | og/ 3, 4, 5 but can be enabled withtheesc_char s optionin the
Opt s list, see ct: 1 og/ 3, 4, 5.

If the character escaping feature needsto be disabled (typically for backwards compatibility reasons), usethect _run
start flag- no_esc_chars,orthect: run_t est/ 1 start option{ esc_char s, Bool } (thisstart optionisalso
supported in test specifications).

For more information about log files, see section Log Files in section Running Tests and Analyzing Results.

1.5.19 lllegal Dependencies

Even though it is highly efficient to write test suites with the Common Test framework, mistakes can be made,
mainly because of illegal dependencies. Some of the more frequent mistakes from our own experience with running
the Erlang/OTP test suites follows:

» Depending on current directory, and writing there:

Thisis a common error in test suites. It is assumed that the current directory is the same as the author used as
current directory when the test case was devel oped. Many test cases even try to write scratch filesto thisdirectory.
Instead dat a_di r andpri v_di r areto be used to locate data and for writing scratch files.

» Depending on execution order:

20 | Ericsson AB. All Rights Reserved.: Common Test

1.6 Test Structure

During development of test suites, make no assumptions on the execution order of the test cases or suites. For
example, atest case must not assumethat aserver it dependsonisaready started by aprevioustest case. Reasons
for thisfollows:

* The user/operator can specify the order at will, and maybe a different execution order is sometimes more
relevant or efficient.

« | the user specifies awhole directory of test suites for the test, the execution order of the suites depends on
how the files are listed by the operating system, which varies between systems.

« |If auser wantsto run only a subset of atest suite, there is no way one test case could successfully depend
on another.

* Depending on Unix:
Running Unix commands through os: cird are likely not to work on non-Unix platforms.
* Nested test cases:
Starting a test case from another not only tests the same thing twice, but also makes it harder to follow what is

being tested. Also, if the called test case fails for some reason, so do the caler. This way, one error gives cause
to several error reports, which isto be avoided.

Functionality common for many test case functions can be implemented in common help functions. If these
functions are useful for test cases across suites, put the help functions into common help modules.
« Failureto crash or exit when things go wrong:

Making requests without checking that the return value indicates success can be OK if the test case failslater, but
it is never acceptable just to print an error message (into the log file) and return successfully. Such test cases do
harm, as they create afalse sense of security when overviewing the test results.

e Messing up for subsequent test cases:

Test cases are to restore as much of the execution environment as possible, so that subsequent test cases do not
crash because of their execution order. The function end_per _t est case issuitablefor this.

1.6 Test Structure
1.6.1 General

A test is performed by running one or more test suites. A test suite consists of test cases, configuration functions, and
information functions. Test cases can be grouped in so called test case groups. A test suite is an Erlang module and
test cases are implemented as Erlang functions. Test suites are stored in test directories.

1.6.2 Skipping Test Cases

Certain test cases can be skipped, for example, if you know beforehand that a specific test case fails. The reason can
be functionality that is not yet implemented, a bug that is known but not yet fixed, or some functionality that does not
work or is not applicable on a specific platform.

Test cases can be skipped in the following ways:

e Usingski p_suites andski p_cases termsin test specifications.

e Returning{ ski p, Reason} fromfunctioni nit_per _testcase/2orinit_per_suite/l.

« Returning { ski p, Reason} from the execution clause of the test case. The execution clause is called, so the
author must ensure that the test case does not run.

When atest caseis skipped, it is noted as SKI PPED in the HTML log.

Ericsson AB. All Rights Reserved.: Common Test | 21

1.6 Test Structure

1.6.3 Definition of Terms
Auto-skipped test case

When a configuration function fails (that is, terminates unexpectedly), the test cases depending on the
configuration function are skipped automatically by Commron Test . The status of the test cases is then "auto-
skipped". Test cases are also "auto-skipped" by Conmron Test if the required configuration datais unavailable
at runtime.

Configuration function

A function in a test suite that is meant to be used for setting up, cleaning up, and/or verifying the state and
environment on the System Under Test (SUT) and/or the Cormon Test host node, so that atest case (or a set
of test cases) can execute correctly.

Configuration file

A file containing datarelated to atest and/or an SUT, for example, protocol server addresses, client login details,
and hardware interface addresses. That is, any data that is to be handled as variable in the suite and not be hard-
coded.

Configuration variable
A name (an Erlang atom) associated with a data value read from a configuration file.
data dir

Data directory for atest suite. This directory contains any files used by the test suite, for example, extra Erlang
modules, binaries, or datafiles.

Information function

A function in atest suite that returns alist of properties (read by the Conmon Test server) that describes the
conditions for executing the test casesin the stite.

Major logfile
An overview and summary log file for one or more test suites.
Minor logfile
A log file for one particular test case. Also called the test case log file.
priv_dir
Private directory for atest suite. This directory isto be used when the test suite needs to write to files.
ct_run

The name of an executable program that can be used as an interface for specifying and running testswith Conmron
Test .

Test case
A singletest included in atest suite. A test case isimplemented as afunction in atest suite module.
Test casegroup

A set of test cases sharing configuration functions and execution properties. The execution properties specify if
the test cases in the group are to be executed in random order, in parallel, or in sequence, and if the execution
of the group is be repeated. Test case groups can also be nested. That is, a group can, besides test cases, contain
subgroups.

Test suite
An Erlang module containing a collection of test cases for a specific functional area.

22 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

Test directory

A directory containing one or more test suite modules, that is, a group of test suites.
Argument Confi g

A list of key-value tuples (that is, a property list) containing runtime configuration data passed from the
configuration functions to the test cases.

User-skipped test case
The status of atest case explicitly skipped in any of the ways described in section Skipping Test Cases.

1.7 Examples and Templates

1.7.1 Test Suite Example

The following example test suite shows some tests of a database server:

Ericsson AB. All Rights Reserved.: Common Test | 23

1.7 Examples and Templates

-module(db data type SUITE).
-include lib("common test/include/ct.hrl").
%% Test server callbacks
-export([suite/0, all/o,
init per suite/1, end per suite/1,
init per testcase/2, end per testcase/2]).

%% Test cases
-export([string/1, integer/1]).

-define(CONNECT STR, "DSN=sqlserver;UID=alladin;PWD=sesame").

%% Function: suite() -> Info

%% Info = [tuple()]

%% List of key/value pairs.

%% Description: Returns list of tuples to set default properties

for the suite.

suite() ->

Function: init per suite(Config@) -> Configl

% Config® = Configl = [tuple()]
% A list of key/value pairs, holding the test case configuration.

Description: Initialization before the suite.

init per suite(Config) ->
{ok, Ref} = db:connect(?CONNECT STR, []),
TableName = db lib:unique table name(),
[{con ref, Ref },{table name, TableName}| Config].

Function: end per suite(Config) -> term()

% Config = [tuple()]
% A list of key/value pairs, holding the test case configuration.

Description: Cleanup after the suite.

end per suite(Config) ->
Ref = ?config(con_ref, Config),
db:disconnect(Ref),
ok.

TestCase = atom()
Name of the test case that is about to run.
ConfigO = Configl = [tuple()]
A list of key/value pairs, holding the test case configuration.

Description: Initialization before each test case.

24 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

init per testcase(Case, Config) ->
Ref = ?config(con _ref, Config),
TableName = ?config(table name, Config),
ok = db:create table(Ref, TableName, table type(Case)),
Config.

Function: end per testcase(TestCase, Config) -> term()

% TestCase = atom()
% Name of the test case that is finished.
% Config = [tuple()]

Description: Cleanup after each test case.

end per testcase(Case, Config) ->
Ref = ?config(con_ref, Config),
TableName = ?config(table name, Config),
ok = db:delete table(Ref, TableName),
ok.

Function: all() -> GroupsAndTestCases

% GroupsAndTestCases = [{group,GroupName} | TestCase]
% GroupName = atom()

% Name of a test case group.

% TestCase = atom()

% Name of a test case.

Description: Returns the list of groups and test cases that
are to be executed.

all() ->
[string, integer].

string(Config) ->
insert_and lookup(dummy key, "Dummy string", Config).

integer(Config) ->
insert _and lookup(dummy key, 42, Config).

insert _and lookup(Key, Value, Config) ->
Ref = ?config(con_ref, Config),
TableName = ?config(table name, Config),
ok = db:insert(Ref, TableName, Key, Value),
[Value] = db:lookup(Ref, TableName, Key),
ok = db:delete(Ref, TableName, Key),
[T = db:lookup(Ref, TableName, Key),
ok.

A list of key/value pairs, holding the test case configuration.

1.7.2 Test Suite Templates

The Erlang mode for the Emacs editor includes two Conmon

Test test suite templates, one with extensive

information in the function headers, and one with minimal information. A test suite template provides aquick start for

Ericsson AB. All Rights Reserved.: Common Test | 25

1.7 Examples and Templates

implementing a suite from scratch and gives a good overview of the available callback functions. The two templates
follows:

Large Common Test Suite

26 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

o T e e R
%%% File example SUITE.erl

%%% Author

%%% Description

o090

000

%%% Created

P cococococoobooocooobocOOOOO0COO0ODO0OO0OO0OD00O000000C00000O00O000O000 00
L= R

%% Note: This directive should only be used in test suites.
-compile(export all).

-include lib("common test/include/ct.hrl").

Function: suite() -> Info
Info = [tuple()]
List of key/value pairs.
for the suite.

Note: The suite/0 function is only meant to be used to return

% Description: Returns list of tuples to set default properties
% default data values, not perform any other operations.

suite() ->
[{timetrap, {minutes,10}}].

% Function: init per suite(Config@) ->
% Configl | {skip,Reason} | {skip_and save,Reason,Configl}
% Config® = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.
% Reason = term()

% The reason for skipping the suite.
% Description: Initialization before the suite.

% Note: This function is free to add any key/value pairs to the Config
% variable, but should NOT alter/remove any existing entries.

Config.

% Function: end per suite(Config0) -> term() | {save config,Configl}
% Config® = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.
% Description: Cleanup after the suite.

ok.

% Function: init per group(GroupName, Config0@) ->
% Configl | {skip,Reason} | {skip_and save,Reason,Configl}

Ericsson AB. All Rights Reserved

. Common Test | 27

1.7 Examples and Templates

%% GroupName = atom()

%% Name of the test case group that is about to run.

%% Config® = Configl = [tuple()]

%% A list of key/value pairs, holding configuration data for the group.
%% Reason = term()

%% The reason for skipping all test cases and subgroups in the group.

Description: Initialization before each test case group.
Config.

Function: end per group(GroupName, Config@) ->
term() | {save config,Configl}

%% GroupName = atom()

%% Name of the test case group that is finished.

%% Config® = Configl = [tuple()]

%% A list of key/value pairs, holding configuration data for the group.

Description: Cleanup after each test case group.
ok.

Function: init per testcase(TestCase, Config0Q) ->
Configl | {skip,Reason} | {skip_and save,Reason,Configl}

% TestCase = atom()

% Name of the test case that is about to run.

% Config® = Configl = [tuple()]

% A list of key/value pairs, holding the test case configuration.
% Reason = term()

% The reason for skipping the test case.

% Description: Initialization before each test case.

Note: This function is free to add any key/value pairs to the Config
variable, but should NOT alter/remove any existing entries.

Config.

Function: end per testcase(TestCase, Config0Q) ->
term() | {save config,Configl} | {fail,Reason}

%% TestCase = atom()

%% Name of the test case that is finished.

%% Config® = Configl = [tuple()]

%% A list of key/value pairs, holding the test case configuration.
%% Reason = term()

%% The reason for failing the test case.

Description: Cleanup after each test case.

ok.
%% Function: groups() -> [Group]
%% Group = {GroupName,Properties,GroupsAndTestCases}

28 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

%% GroupName = atom()

%% The name of the group.

%% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]
%% Group properties that may be combined.
%% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]
%% TestCase = atom()

%% The name of a test case.

%% Shuffle = shuffle | {shuffle,Seed}

%% To get cases executed in random order.
%% Seed = {integer(),integer(),integer()}

%% RepeatType = repeat | repeat until all ok | repeat_until all fail |
6% repeat_until _any ok | repeat until _any fail

%% To get execution of cases repeated.

%% N = integer() | forever

Description: Returns a list of test case group definitions.

Function: all() -> GroupsAndTestCases | {skip,Reason}

% GroupsAndTestCases = [{group,GroupName} | TestCase]
% GroupName = atom()

% Name of a test case group.
% TestCase = atom()

% Name of a test case.
% Reason = term()

% The reason for skipping all groups and test cases.

Description: Returns the list of groups and test cases that
are to be executed.

all() ->
[my test case].

Info = [tuple()]
List of key/value pairs.

properties for the test case.

Note: This function is only meant to be used to return a list of

o
©
o0
)
o0
)
o0
070
o0
070
o0
070
%% Description: Test case info function - returns list of tuples to set
%%
o0
070
o0
070
%% values, not perform any other operations.

O/OO

Function: TestCase(Config@) ->
ok | exit() | {skip,Reason} | {comment,Comment}
{save config,Configl} | {skip_and save,Reason,Configl}

ConfigO = Configl = [tuple()]

A list of key/value pairs, holding the test case configuration.
Reason = term()

Ericsson AB. All Rights Reserved.: Common Test | 29

1.7 Examples and Templates

The reason for skipping the test case.
Comment = term()
A comment about the test case that will be printed in the html log.

Description: Test case function. (The name of it must be specified in
the all/0 list or in a test case group for the test case
to be executed).

my test case(Config) ->
ok.

Small Common Test Suite

30 | Ericsson AB. All Rights Reserved.: Common Test

1.7 Examples and Templates

o T e e R
%%% File example SUITE.erl

%%% Author

%%% Description

o090

000

%%% Created

o900

L= L

module (example SUITE).
-compile(export all).

-include lib("common test/include/ct.hrl").

%% Function: suite() -> Info
%% Info = [tuple()]
suite() ->
[{timetrap, {seconds,30}}].
%% Function: init per suite(Config@) ->
%% Configl | {skip,Reason} | {skip_and save,Reason,Configl}
%% Configd = Configl = [tuple()]
%% Reason = term()

Config.
%% Function: end per suite(Config@) -> term() | {save config,Configl}
%% Configd = Configl = [tuple()]

ok.

%% Function: init per group(GroupName, Config@) ->

%% Configl | {skip,Reason} | {skip_and save,Reason,Configl}
%% GroupName = atom()

%% Configd = Configl = [tuple()]

%% Reason = term()

Config.
%% Function: end per group(GroupName, Config0) ->
%% term() | {save config,Configl}
%% GroupName = atom()
%% Config® = Configl = [tuple()]

ok.

%% Function: init per testcase(TestCase, Config@) ->

%% Configl | {skip,Reason} | {skip_and save,Reason,Configl}
%% TestCase = atom()

%% Configd = Configl = [tuple()]

%% Reason = term()

init per testcase(TestCase, Config) ->
Config.

Ericsson AB. All Rights Reserved

. Common Test | 31

1.8 Running Tests and Analyzing Results

%% Function: end per testcase(TestCase, Config0) ->

%% term() | {save config,Configl} | {fail,Reason}
%% TestCase = atom()

%% Config® = Configl = [tuple()]

%% Reason = term()

ok.

% Function: groups() -> [Group]

% Group = {GroupName,Properties,GroupsAndTestCases}

% GroupName = atom()

% Properties = [parallel | sequence | Shuffle | {RepeatType,N}]

% GroupsAndTestCases = [Group | {group,GroupName} | TestCase]

% TestCase = atom()

% Shuffle = shuffle | {shuffle,{integer(),integer(),integer()}}

% RepeatType = repeat | repeat _until all ok | repeat until all fail |
% repeat_until _any ok | repeat until any fail

% N = integer() | forever

%% Function: all() -> GroupsAndTestCases | {skip,Reason}
%% GroupsAndTestCases = [{group,GroupName} | TestCase]
%% GroupName = atom()

%% TestCase = atom()

%% Reason = term()

all() ->
[my test case].

Function: TestCase(Config@) ->
ok | exit() | {skip,Reason} | {comment,Comment}
{save config,Configl} | {skip_and save,Reason,Configl}
ConfigO = Configl = [tuple()]
Reason = term()
Comment = term()

my test case(Config) ->
ok.

1.8 Running Tests and Analyzing Results

1.8.1 Using the Common Test Framework
TheCommon Test framework provides ahigh-level operator interface for testing, providing the following features:

e Automatic compilation of test suites (and help modules)
* Creation of extraHTML pages for improved overview.
e Single-command interface for running all available tests

32 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

« Handling of configuration files specifying data related to the System Under Test (SUT) (and any other variable
data)

e Maode for running multiple independent test sessions in parallel with central control and configuration

1.8.2 Automatic Compilation of Test Suites and Help Modules

When Common Test starts, it automatically attemptsto compile any suitesincluded in the specified tests. If particular
suites are specified, only those suites are compiled. If aparticular test object directory is specified (meaning all suites
in this directory are to be part of the test), Cormon Test runsfunction make: al | / 1 in the directory to compile
the suites.

If compilation fails for one or more suites, the compilation errors are printed to tty and the operator is asked if the test
run isto proceed without the missing suites, or be aborted. If the operator chooses to proceed, the tests having missing
suitesare noted intheHTML log. If Cormon Test isunable to prompt the user after compilation failure (if Conmon
Test does not control st di n), the test run proceeds automatically without the missing suites. This behavior can
however be modified with the ct _run flag - abort i f_mi ssing_suites,orthect:run_test/1 option
{abort _if_missing_suites, TrueOrFal se}.Ifabort _if_missing_suitesissettotrue,thetest
run stopsimmediately if some suitesfail to compile.

Any help module (that is, regular Erlang module with name not ending with "_SUITE") that resides in the same test
object directory as a suite, which is part of the test, is also automatically compiled. A help moduleis not mistaken for
atest suite (unlessit hasa”_SUITE" name). All help modules in a particular test object directory are compiled, no
matter if all or only particular suitesin the directory are part of the test.

If test suites or help modules include header files stored in other locations than the test directory, these include
directories can be specified by using flag - i ncl ude withct _run, or optioni ncl ude withct: run_test/ 1.
Also, an include path can be specified with an OS environment variable, CT_| NCLUDE_PATH.

Example (bash):
$ export CT_I NCLUDE_PATH=~t est user/ comon_suite_fil es/incl ude: ~t est user/
common_lib files/include

Common Test passes al include directories (specified either with flag/option i ncl ude, or variable
CT_| NCLUDE_PATH, or both, to the compiler.

Include directories can also be specified in test specifications, see Test Specifications.

If the user wants to run all test suites for atest object (or an OTP application) by specifying only the top directory
(for example, with start flag/option di r), Conmon Test primarily looks for test suite modules in a subdirectory
named t est . If this subdirectory does not exist, the specified top directory is assumed to be the test directory, and
test suites are read from there instead.

To disable the automatic compilation feature, use flag -no_auto_conpil e with ct_run, or option
{auto_conpil e, fal se} withct:run_test/ 1. With automatic compilation disabled, the user isresponsible
for compiling the test suite modules (and any help modules) before the test run. If the modules cannot be loaded from
the local file system during startup of Conmon Test , the user must preload the modules before starting the test.
Conmmon Test only verifiesthat the specified test suites exist (that is, that they are, or can be, loaded). Thisis useful,
for example, if the test suites are transferred and loaded as binaries through RPC from a remote node.

1.8.3 Running Tests from the OS Command Line
Thect _run program can be used for running tests from the OS command line, for example, as follows:

e ct_run -config <configfilenanes> -dir <dirs>
e ct_run -config <configfilenames> -suite <suitesw thfull path>

e ct_run -userconfig <cal |l backnmodul enanme> <confi gfil enanes> -suite
<sui teswi t hf ul | pat h>

Ericsson AB. All Rights Reserved.: Common Test | 33

1.8 Running Tests and Analyzing Results

e ct_run -config <configfilenanes> -suite <suitew thfullpath> -group

<groups> -case <casenanes>

Examples:
$ ct _run -config $CFGS/sysl.cfg $CFGS/sys2.cfg -dir $SYS1 TEST $SYS2 TEST
$ ct _run -userconfig ct config xml $CFGS/sysl.xml $CFGS/sys2.xml -dir $SYS1 TEST $SYS2 TEST
$ ct run -suite $SYS1 TEST/setup SUITE $SYS2 TEST/config SUITE
$ ct run -suite $SYS1 TEST/setup SUITE -case start stop
$ ct run -suite $SYS1 TEST/setup SUITE -group installation -case start stop

The flags di r, sui t e, and gr oup/ case can be combined. For example, to run x_SUI TE and y_SUl TE in

directory t est di r, asfollows:

$ ct run -dir ./testdir -suite x SUITE y SUITE

This has the same effect as the following:

$ ct run -suite ./testdir/x SUITE ./testdir/y SUITE

For details, see Test Case Group Execution.
The following flags can also be used withct _r un:
-hel p
Listsall available start flags.
-logdir <dir>
Specifieswhere the HTML log files are to be written.
-| abel <nane_of test_run>
Associates the test run with a name that gets printed in the overview HTML log files.
-refresh_| ogs
Refreshes the top-level HTML index files.
-vts
Starts web-based GUI (described later).
-shel |
Starts interactive shell mode (described later).
-step [step_opts]
Steps through test cases using the Erlang Debugger (described later).
-spec <testspecs>
Uses test specification as input (described later).
-al |l ow_user _terns
Allows user-specific termsin atest specification (described |ater).
-silent_connections [conn_types]
,tellsCommon Test to suppress printouts for specified connections (described later).

34 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

-styl esheet <css_file>

Points out a user HTML style sheet (described later).
-cover <cover_cfg_file>

To perform code coverage test (see Code Coverage Analysis).
-cover_stop <bool >

To specify if thecover tool isto be stopped after the test is completed (see Code Coverage Analysis).
-event _handl er <event _handl er s>

Toingtall event handlers.
-event _handl er _init <event handl er s>

Toinstall event handlersincluding start arguments.
-ct _hooks <ct _hooks>

To install Common Test Hooks including start arguments.
-enabl e_buil tin_hooks <bool >

To enable or disable Built-in Common Test Hooks. Default ist r ue.
-incl ude

Specifies include directories (described earlier).
-no_auto_conpile

Disables the automatic test suite compilation feature (described earlier).
-abort _if_mssing_suites

Abortsthetest run if one or more suites fail to compile (described earlier).
-multiply_tinetraps <n>

Extends timetrap time-out values.
-scal e_tinetraps <bool >

Enables automatic timetrap time-out scaling.
-repeat <n>

TellsCommon Test to repeat the tests n times (described | ater).
-duration <tinme>

TellsCommon Test to repeat the tests for duration of time (described later).
-until <stop_tinme>

TellsCommon Test to repeat thetestsuntil st op_t i me (described later).
-force_stop [skip_rest]

Ontime-out, thetest runisaborted when the current test job isfinished. If ski p_r est isprovided, theremaining
test cases in the current test job are skipped (described later).

-decrypt _key <key>
Provides a decryption key for encrypted configuration files.
-decrypt _file <key file>
Points out afile containing a decryption key for encrypted configuration files.

Ericsson AB. All Rights Reserved.: Common Test | 35

1.8 Running Tests and Analyzing Results

-basic_htm
Switches off HTML enhancements that can be incompatible with older browsers.
-1 ogopt s <opt s>
Enables modification of the logging behavior, see Log options.
-verbosity <l evel s>
Sets verbosity levels for printouts.
-no_esc_chars

Disables automatic escaping of special HTML characters. See the Logging chapter.

Directories passed to Conmon Test can have either relative or absolute paths.

Any start flags to the Erlang runtime system (application ERTS) can al so be passed as parameterstoct _run. Itis,
for example, useful to be able to pass directoriesto be added to the Erlang code server search path with flag - pa or
- pz. If you have common help- or library modules for test suites (separately compiled), stored in other directories
than the test suite directories, these hel p/ | i b directories are preferably added to the code path this way.

Example:

$ ct_run -dir ./chat_server -logdir ./chat_server/testlogs -pa $PW/
chat _server/ebin

The absolute path of directory chat _ser ver/ ebi n ishere passed to the code server. Thisis essential because
relative paths are stored by the code server asrelative, and Conmon Test changes the current working directory
of ERTS during the test run.

Thect _r un program sets the exit status before shutting down. The following values are defined:

e O indicates asuccessful testrun, that is, without failed or auto-skipped test cases.
* lindicatesthat one or more test cases have failed, or have been auto-skipped.

« 2 indicatesthat the test execution has failed because of, for example, compilation errors, or anillegal return
value from an information function.

If auto-skipped test cases do not affect the exit status. The default behavior can be changed using start flag:

-exit status ignore config

Executing ct _r un without start flagsis equal to thecommand: ct _run -dir ./

For more information about the ct _r un program, see modulect _r un and section Installation.

1.8.4 Running Tests from the Erlang Shell or from an Erlang Program

Conmon Test provides an Erlang API for running tests. The main (and most flexible) function for specifying and
executingtestsisct : run_t est/ 1. It takesthe same start parametersasct _r un, but the flags are instead specified
asoptionsin alist of key-value tuples. For example, atest specified withct _r un asfollows:

36 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

$ ct _run -suite ./ny_SUTE -logdir ./results
iswithct : run_t est/ 1 specified as:
1> ct:run_test([{suite,"./my_SU TE"},{logdir,"./results"}]).

The function returns the test result, represented by the tuple { Ok, Fai | ed, { User Ski pped, Aut oSki pped}},
where each element isan integer. If test execution fails, the function returnsthetuple{ er r or , Reason} , wherethe
term Reason explainsthefailure.

Thedefault start option { di r, Cwd} (to run all suitesin the current working directory) isused if the functioniscalled
with an empty list of options.

Releasing the Erlang Shell

During execution of tests started with ct : run_t est / 1, the Erlang shell process, controlling st di n, remains the
top-level process of the Common Test system of processes. Consequently, the Erlang shell is not available for
interaction during the test run. If thisis not desirable, for example, because the shell is needed for debugging purposes
or for interaction with the SUT during test execution, set start option r el ease_shel | to true (in the call to
ct:run_test/ 1 orbyusingthecorresponding test specification term, described later). ThismakesConmon Test
release the shell immediately after the test suite compilation stage. To accomplish this, atest runner processis spawned
to take control of the test execution. The effect isthat ct : run_t est / 1 returns the pid of this process rather than
the test result, which instead is printed to tty at the end of the test run.

Tousethefunctionsct : break/ 1, 2andct: continue/ 0, 1,rel ease_shel | must besettotr ue. ‘

For details, seect : run_t est/ 1 manual page.

1.8.5 Test Case Group Execution

Withthect _runflag,orct:run_test/ 1 optiongr oup, oneor moretest case groups can be specified, optionally
in combination with specific test cases. The syntax for specifying groups on the command line is as follows:

$ ct _run -group <group names or paths> [-case <cases>]

The syntax in the Erlang shell is as follows:

1> ct:run_test([{group,GroupsNamesOrPaths}, {case,Cases}]).

Parameter gr oup_nanes_or _pat hs specifies one or more group names and/or one or more group paths. At
startup, Conmon Test searches for matching groups in the group definitions tree (that is, the list returned from
Sui t e: gr oups/ 0; for details, see section Test Case Groups.

Given a group name, say g, Common Test searches for all paths leading to g. By path is meant a sequence of
nested groups, which must be followed to get from the top-level group to g. To execute the test cases in group g,
Conmmon Test mustcall thei nit _per _gr oup/ 2 function for each group in the path to g, and all corresponding
end_per _gr oup/ 2 functionsafterwards. Thisisbecausethe configuration of atest caseing (anditsConf i g input
data) dependsoni nit _per testcase(Test Case, Config) anditsreturn value, which inturn dependson
init_per_group(g, Config) anditsreturn value, which in turn dependsoni nit _per group/ 2 of the
group above g, and so on, all the way up to the top-level group.

This means that if there is more than one way to locate a group (and its test cases) in a path, the result of the group
search operation isanumber of tests, al of which areto be performed. Cormon Test interpretsagroup specification
that consists of a single name as follows:

Ericsson AB. All Rights Reserved.: Common Test | 37

1.8 Running Tests and Analyzing Results

"Search and find al paths in the group definitions tree that lead to the specified group and, for each path, create atest
that does the following, in order:

» Executesall configuration functions in the path to the specified group.

* Executesall, or all matching, test casesin this group.

» Executesall, or al matching, test casesin all subgroups of the group.”

Theuser can specify aspecific group pathwith parameter gr oup_nanes_or _pat hs. Withthistypeof specification

execution of unwanted groups (in otherwise matching paths), and/or the execution of subgroups can be avoided. The
command line syntax of the group path isalist of group namesin the path, for example:

$ ct_run -suite "./x_SU TE" -group [9gl,903,94] -case tcl tch
The syntax in the Erlang shell is as follows (requires a list within the groups list):

1> ct:run_test([{suite,"./x_SU TE"}, {group,[[91,93,04]1}, {test case,

[tcl,tc5]}]).

The last group in the specified path is the terminating group in the test, that is, no subgroups following this group are
executed. In the previous example, g4 is the terminating group. Hence, Conmon Test executes atest that calls all
i ni t configuration functions in the path to g4, that is, g1. . g3. . g4. It then callstest casest c1 and t ¢5 in g4,
and finally all end configuration functionsin order g4. . g3. . g1.

The group path specification does not necessarily have to include all groups in the path to the terminating group.
Common Test searchesfor all matching pathsif an incomplete group path is specified.

Group names and group paths can be combined with parameter gr oup_nanes_or _pat hs. Each element is
treated as an individual specification in combination with parameter cases. The following examples illustrates
this.

Examples:

-module(x_SUITE).
%% The group definitions:
groups() ->
[{topl,[],[tcll,tcl2,
{subl1l,[],[tcl2,tc13]},
{sub12,[],[tcl4,tcl5,
{subl121,[],[tcl2,tc16]1}1}1},

{top2, [1, [{group, sub21}, {group, sub22}1},
{sub21,[],[tc21,{group,sub2X2}1},
{sub22,[],[{group,sub221},tc21,tc22,{group,sub2X2}]},
{sub221,[], [tc21,tc23]},
{sub2X2,[],[tc21,tc24]}].
The following executes two tests, one for all cases and all subgroups under t op1, and onefor al under t op2:
$ ct _run -suite "x SUITE" -group all
1> ct:run_test([{suite,"x SUITE"}, {group,all}]).

Using- group topl top2,or{group,[topl,top2]} givesthesame result.

38 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

The following executes one test for all cases and subgroups under t op1:
$ ct run -suite "x SUITE" -group topl
1> ct:run_test([{suite,"x SUITE"}, {group, [topl]}]).

The following runs atest executingt c12 int opl and any subgroup under t op1 where it can be found (sub11
andsub121):

$ ct run -suite "x SUITE" -group topl -case tcl2
1> ct:run_test([{suite,"x SUITE"}, {group,[topl]}, {testcase,[tcl2]}]).
Thefollowing executest c12 only ingroupt op1:
$ ct run -suite "x SUITE" -group [topl] -case tcl2
1> ct:run_test([{suite,"x SUITE"}, {group,[[topl]]}, {testcase,[tcl2]}]).
Thefollowing searchest op1 and al itssubgroupsfort ¢ 16 resultingin that thistest case executesingroupsub121:
$ ct run -suite "x SUITE" -group topl -case tcl6
1> ct:run_test([{suite,"x SUITE"}, {group,[topl]}, {testcase,[tcl6]}]).

Using the specific path - gr oup [sub121] or{group, [[sub121]]} givesthe sameresultin thisexample.

The following executes two tests, one including all cases and subgroups under sub12, and one with only the test
casesinsubl12:

$ ct run -suite "x SUITE" -group subl2 [subl2]
1> ct:run_test([{suite,"x SUITE"}, {group,[subl2,[subl2]]}]1).

In the following example, Conmon Test finds and executes two tests, one for the path from t op2 to sub2X2
through sub21, and onefromt op2 to sub2X2 through sub22:

$ ct run -suite "x SUITE" -group sub2X2
1> ct:run_test([{suite,"x SUITE"}, {group, [sub2X2]}1).

In the following example, by specifying the unique patht op2 - > sub2l -> sub2X2, only onetest is executed.
The second possible path, from t op2 to sub2X2 (from the former example) is discarded:

$ ct run -suite "x SUITE" -group [sub2l,sub2X2]
1> ct:run_test([{suite,"x SUITE"}, {group,[[sub2l,sub2X2]1]}]).

The following executes only the test cases for sub22 and in reverse order compared to the group definition:

$ ct run -suite "x SUITE" -group [sub22] -case tc22 tc21
1> ct:run _test([{suite,"x SUITE"}, {group,[[sub22]1}, {testcase,[tc22,tc21]1}]).

If atest case belonging to a group (according to the group definition) is executed without a group specification, that
is, simply by (using the command line):

$ ct_run -suite "ny_SU TE" -case ny_tc
or (using the Erlang shell):
1> ct:run_test([{suite,"nmy _SU TE"}, {testcase,ny _tc}]).

Ericsson AB. All Rights Reserved.: Common Test | 39

1.8 Running Tests and Analyzing Results

then Common Test ignores the group definition and executes the test case in the scope of the test suite only (no
group configuration functions are called).

The group specification feature, as presented in this section, can also be used in Test Specifications (with some extra
features added).

1.8.6 Running the Interactive Shell Mode

You can start Common Test inaninteractive shell mode where no automatic testing is performed. Instead, Cormon
Test dtartsits utility processes, installs configuration data (if any), and waits for the user to call functions (typically
test case support functions) from the Erlang shell.

The shell modeisuseful, for example, for debugging test suites, analyzing and debugging the SUT during "simulated”
test case execution, and trying out various operations during test suite devel opment.

To start theinteractive shell mode, start an Erlang shell manually and call ct : i nst al | / 1 toinstall any configuration
data you might need (use [] as argument otherwise). Then call ct: start _interactive/ 0 to stat Conmon
Test .

If you use the ct _r un program, you can start the Erlang shell and Cormon Test in one go by using the flag -
shel | and, optionally, flag - conf i g and/or - user confi g.

Examples:

e ct_run -shell
e ct_run -shell -config cfg/db.cfg
e ct_run -shell -userconfig db_|ogin testuser x523qZ

If no configuration fileis specified with command ct _r un, awarning isdisplayed. If Cormbn Test hasbeen run
from the same directory earlier, the same configuration file(s) are used again. If Cormbn Test has not been run
from this directory before, no configuration files are available.

If any functions using "required configuration data" (for example, functionsct _t el net orct _ft p)aretobecalled
from the Erlang shell, first require configuration datawith ct: require/ 1, 2. Thisisequivalenttoar equi re
statement in the Test Suite Information Function or in the Test Case Information Function.

Example:

1> ct:require(unix_telnet, unix).

ok

2> ct _telnet:open(unix_ telnet).

{0k, <0.105.0>}

4> ct telnet:cmd(unix_telnet, "ls .").
{ok,["ls .","filel ...",...]1}

Everything that Conmon Test normally prints in the test case logs, are in the interactive mode written to a
log named ct | og. ht m indirectory ct _run. <ti nest anp>. A link to this file is available in the file named
| ast _i nteractive. ht m inthedirectory fromwhichyouexecutect _r un. Specifying adifferent root directory
for the logs than the current working directory is not supported.

If you wish to exit the interactive mode (for example, to start an automated test run with ct: run_test/ 1),
cal function ct:stop_interactive/0. This shuts down the running ct application. Associations
between configuration names and data created with require are consequently deleted. Function
ct:start _interactive/ 0 takesyou back into interactive mode, but the previous state is not restored.

1.8.7 Step-by-Step Execution of Test Cases with the Erlang Debugger

Usingct _run -step [opts], or by passing option { st ep, Opt s} toct:run_test/ 1, thefollowing is
possible:

40 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

e Get the Erlang Debugger started automatically.

« Useitsgraphical interface to investigate the state of the current test case.

» Execute thetest case step-by-step and/or set execution breakpoints.

If no extra options are specified with flag/option st ep, breakpoints are set automatically on the test cases that are
to be executed by Common Test , and those functions only. If step option conf i g is specified, breakpoints are

also initialy set on the configuration functions in the suite, that is, i nit _per_suite/ 1, end_per _suite/ 1,
i nit_per_group/2,end_per_group/2,init_per_testcase/2andend_per_testcase/ 2.

Conmmon Test enables the Debugger auto-attach feature, which means that for every new interpreted test case
function that starts to execute, a new trace window automatically pops up (as each test case executes on a dedicated
Erlang process). Whenever a new test case starts, Conmon Test attempts to close the inactive trace window
of the previous test case. However, if you prefer Common Test to leave inactive trace windows, use option
keep_i nacti ve.

The step functionality can be used together with flag/optionsui t e andsui t e +case/ t est case, but not together
withdi r.

1.8.8 Test Specifications

General Description

The most flexible way to specify what to test, is to use a test specification, which is a sequence of Erlang terms. The
terms are normally declared in one or more text files (seect : run_t est/ 1), but can also be passed to Cormon
Test ontheform of alist (seect : run_t est spec/ 1). There are two general types of terms. configuration terms
and test specification terms.

With configuration termsiit is, for example, possible to do the following:

e Label thetestrun (similartoct _run -1 abel).

« Evaluate any expressions before starting the test.

e Import configuration data (ssimilar toct _run -confi g/ -user confi g).
e Specify thetop-level HTML log directory (similartoct _run -1 ogdi r).

» Enable code coverage analysis (similartoct _run -cover).

e Instal Cormbn Test Hooks (similartoct _run -ch_hooks).

* Install event _handl er plugins(similartoct _run -event _handl er).

» Specify include directories to be passed to the compiler for automatic compilation (similartoct _run -
i ncl ude).

» Disable the auto-compilation feature (similar toct _run -no_aut o_conpi |l e).
e Setverbosity levels(similartoct _run -verbosity).

Configuration terms can be combined withct _r un start flagsorct : run_t est/ 1 options. Theresult is, for some
flags/options and terms, that the values are merged (for example, configuration files, include directories, verbosity
levels, and silent connections) and for others that the start flags/options override the test specification terms (for
example, log directory, label, style sheet, and auto-compilation).

With test specification terms, it is possible to state exactly which teststo run and in which order. A test term specifies
either one or more suites, one or more test case groups (possibly nested), or one or more test cases in a group (or in
multiple groups) or in a site.

Any number of test terms can be declared in sequence. Conmon Test compiles by default the terms into one or
more tests to be performed in one resulting test run. A term that specifies a set of test cases "swallows" one that only
specifies a subset of these cases. For example, the result of merging one term specifying that all casesin suite S are
to be executed, with another term specifying only test case X and Y in S, is atest of all casesin S. However, if a
term specifying test case X and Y in Sis merged with a term specifying case Z in S, the result isatest of X, Y, and

Ericsson AB. All Rights Reserved.: Common Test | 41

1.8 Running Tests and Analyzing Results

Zin S. To disable this behavior, that is, to instead perform each test sequentially in a "script-like" manner, set term
nmer ge_t est s tof al se inthetest specification.

A test term can also specify one or more test suites, groups, or test cases to be skipped. Skipped suites, groups, and
cases are not executed and show up in the HTML log files as SKI PPED.

Using Multiple Test Specification Files

When multiple test specification files are specified at startup (either withct _run -spec filel file2 ...
orct:run_test([{spec, [Filel,File2,...]1}])), Compn Test either executes one test run per
specification file, or joins the files and performs al tests within one single test run. The first behavior is the default
one. The latter requires that start flag/option j oi n_specs is provided, for example, run_test -spec ./
my_testsl.ts ./ny_tests2.ts -join_specs.

Joining a number of specifications, or running them separately, can also be accomplished with (and can be combined
with) test specification fileinclusion.

Test Specification File Inclusion

With the term specs, atest specification can include other specifications. An included specification can either be
joined with the source specification or used to produce a separate test run (as with start flag/option j oi n_specs
above).

Example:

%% In specification file "a.spec"
{specs, join, ["b.spec", "c.spec"]}.
{specs, separate, ["d.spec", "e.spec"l}.
%% Config and test terms follow

In this example, the test terms defined in files "b.spec” and "c.spec” are joined with the terms in source specification
"a.gpec” (if any). The inclusion of specifications "d.spec” and "e.spec” results in two separate, and independent, test
runs (one for each included specification).

Optionj oi n does not imply that the test terms are merged, only that all tests are executed in one single test run.

Joined specifications share common configuration settings, such asthelist of conf i g filesor i ncl ude directories.
For configurations that cannot be combined, such as settings for | ogdi r or ver bosi ty, it is up to the user to
ensure there are no clashes when the test specifications are joined. Specifications included with option separ at e
do not share configuration settings with the source specification. This is useful, for example, if there are clashing
configuration settings in included specifications, making it them impossible to join.

If {merge_tests,true} is set in the source specification (which is the default setting), terms in joined
specifications are merged with terms in the source specification (according to the description of nerge_tests
earlier).

Notice that it is aways the merge_tests setting in the source specification that is used when joined
with other specifications. Say, for example, that a source specification A, with tests TA1 and TA2, has
{merge_tests, fal se} set, and that it includes another specification, B, with tests TB1 and TB2, that has
{merge_tests,true} set. The result is that the test series TA1, TA2, ner ge(TB1, TB2) is executed. The
opposite mer ge_t est s settings would result in the test seriesmer ge(ner ge(TAL, TA2), TB1, TB2) .

Theterm specs can be used to nest specifications, that is, have one specification include other specifications, which
in turn include others, and so no

Test Case Groups

When atest case group is specified, theresulting test executesfunctioni ni t _per _gr oup, followed by all test cases
and subgroups (including their configuration functions), and finally function end_per _gr oup. Also, if particular

42 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

test casesin agroup are specified, i ni t _per _group andend_per _gr oup, for the group in question, are called.
If agroup defined (in Sui t e: gr oup/ 0) as a subgroup of another group, is specified (or if particular test cases of
a subgroup are), Cormon Test calls the configuration functions for the top-level groups and for the subgroup in
guestion (making it possible to pass configuration data al the way fromi ni t _per _sui t e down to the test cases
in the subgroup).

The test specification uses the same mechanism for specifying test case groups through names and paths, as explained
in section Test Case Group Execution, with the addition of element Gr oupSpec.

Element G- oupSpec makes it possible to specify group execution properties that overrides those in the group
definition (that is, ingr oups/ 0). Execution propertiesfor subgroups might be overridden aswell. Thisfeature makes
it possibleto change properties of groups at thetime of execution, without having to edit thetest suite. The samefeature
isavailablefor gr oup elementsinthe Sui t e: al | / O list. For details and examples, see section Test Case Groups.

Test Specification Syntax

Test specifications can be used to run tests both in asingle test host environment and in adistributed Conmon Test
environment (Large Scale Testing). The node parametersintermi ni t areonly relevant in the latter (see section Test
Secificationsin Large Scale Testing). For details about the various terms, see the corresponding sectionsin the User's
Guide, for example, the following:

e Thect run programfor an overview of available start flags (as most flags have a corresponding
configuration term)

e Logging (for termsver bosi ty, st yl esheet,basi c_htm andesc_chars)

* External Configuration Data (for termsconf i g and user confi g)

e Event Handling (for theevent _handl er term)

e Common Test Hooks (for term ct _hooks)

Configuration terms:

Ericsson AB. All Rights Reserved.: Common Test | 43

1.8 Running Tests and Analyzing Results

{merge tests, Bool}.

{define, Constant, Value}.

{specs, InclSpecsOption, TestSpecs}.
{node, NodeAlias, Node}.

{init, InitOptions}.
{init, [NodeAlias], InitOptions}.

{label, Label}.
{label, NodeRefs, Label}.

{verbosity, VerbositylLevels}.
{verbosity, NodeRefs, VerbositylLevels}.

{stylesheet, CSSFile}.
{stylesheet, NodeRefs, CSSFile}.

{silent connections, ConnTypes}.
{silent connections, NodeRefs, ConnTypes}.

{multiply timetraps, N}.
{multiply timetraps, NodeRefs, N}.

{scale timetraps, Bool}.
{scale timetraps, NodeRefs, Bool}.

{cover, CoverSpecFile}.
{cover, NodeRefs, CoverSpecFile}.

{cover _stop, Bool}.
{cover stop, NodeRefs, Bool}.

{include, IncludeDirs}.
{include, NodeRefs, IncludeDirs}.

{auto compile, Bool},
{auto compile, NodeRefs, Bool},

{abort if missing suites, Bool},
{abort if missing suites, NodeRefs, Bool},

{config, ConfigFiles}.

{config, ConfigDir, ConfigBaseNames}.

{config, NodeRefs, ConfigFiles}.

{config, NodeRefs, ConfigDir, ConfigBaseNames}.

{userconfig, {CallbackModule, ConfigStrings}}.
{userconfig, NodeRefs, {CallbackModule, ConfigStrings}}.

{logdir, LogDir}.
{logdir, NodeRefs, LogDir}.

{logopts, LogOpts}.
{logopts, NodeRefs, LogOpts}.

{create priv_dir, PrivDirOption}.
{create priv dir, NodeRefs, PrivDirOption}.

{event handler, EventHandlers}.

{event handler, NodeRefs, EventHandlers}.
{event handler, EventHandlers, InitArgs}.

44 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

{event handler, NodeRefs, EventHandlers, InitArgs}.

{ct_hooks, CTHModules}.
{ct_hooks, NodeRefs, CTHModules}.

{enable builtin hooks, Bool}.

{basic_html, Bool}.
{basic_html, NodeRefs, Bool}.

{esc_chars, Bool}.
{esc_chars, NodeRefs, Bool}.

{release shell, Bool}.
Test terms:
{suites, Dir, Suites}.
{suites, NodeRefs, Dir, Suites}.

{groups, Dir, Suite, Groups}.
{groups, NodeRefs, Dir, Suite, Groups}.

{groups, Dir, Suite, Groups, {cases,Cases}}.
{groups, NodeRefs, Dir, Suite, Groups, {cases,Cases}}.

{cases, Dir, Suite, Cases}.
{cases, NodeRefs, Dir, Suite, Cases}.

{skip suites, Dir, Suites, Comment}.
{skip suites, NodeRefs, Dir, Suites, Comment}.

{skip groups, Dir, Suite, GroupNames, Comment}.
{skip _groups, NodeRefs, Dir, Suite, GroupNames, Comment}.

{skip cases, Dir, Suite, Cases, Comment}.
{skip cases, NodeRefs, Dir, Suite, Cases, Comment}.

Types.

Ericsson AB. All Rights Reserved.: Common Test | 45

1.8 Running Tests and Analyzing Results

Bool = true | false
Constant = atom()
Value = term()
InclSpecsOption = join | separate
TestSpecs = string() | [string()]
NodeAlias = atom()
Node = node()
NodeRef = NodeAlias | Node | master
NodeRefs = all nodes | [NodeRef] | NodeRef
InitOptions = term()
Label = atom() | string()
VerbositylLevels = integer() | [{Category,integer()}]
Category = atom()
CSSFile = string()
ConnTypes = all | [atom()]
N = integer()
CoverSpecFile = string()
IncludeDirs = string() | [string()]
ConfigFiles = string() | [string()]
ConfigDir = string()
ConfigBaseNames = string() | [string()]
CallbackModule = atom()
ConfigStrings = string() | [string()]
LogDir = string()
LogOpts = [term()]
PrivDirOption = auto per run | auto per tc | manual per tc
EventHandlers = atom() | [atom()]
InitArgs = [term()]
CTHModules = [CTHModule |

{CTHModule, CTHInitArgs} |

{CTHModule, CTHInitArgs, CTHPriority}]
CTHModule = atom()
CTHInitArgs = term()
Dir = string()
Suites = atom() | [atom()] | all
Suite = atom()
Groups = GroupPath | [GroupPath] | GroupSpec | [GroupSpec] | all
GroupPath = [GroupName]
GroupSpec = GroupName | {GroupName,Properties} | {GroupName,Properties,GroupSpec}
GroupName = atom()
GroupNames = GroupName | [GroupName]
Cases = atom() | [atom()] | all
Comment = string() | ""

The difference between the conf i g terms above is that with Conf i gDi r, Conf i gBaseNanes isalist of base
names, that is, without directory paths. Confi gFi | es must be full names, including paths. For example, the
following two terms have the same meaning:

{config, ["/home/testuser/tests/config/nodeA.cfg",
"/home/testuser/tests/config/nodeB.cfg"1}.

{config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"l]}.

46 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

Any relative paths, specified inthetest specification, arerelativeto thedirectory containing thetest specificationfile
ifct_run -spec TestSpecFile ... orct:run:test([{spec, TestSpecFile},...]) executes
the test.

The path is relative to the top-level log directory if ct : run: t est spec(Test Spec) executes the test.

Constants

Thetermdef i ne introducesaconstant that isused to replacethe name Const ant with Val ue, wherever itisfound
in the test specification. This replacement occurs during an initial iteration through the test specification. Constants
can be used anywhere in the test specification, for example, in any lists and tuples, and even in strings and inside the
value part of other constant definitions. A constant can also be part of a node name, but that is the only place where
aconstant can be part of an atom.

For the sake of readability, the name of the constant must always begin with an uppercase letter, or a$, ?, or _.
This means that it must always be single quoted (as the constant name is an atom, not text).

The main benefit of constants is that they can be used to reduce the size (and avoid repetition) of long strings, such
asfile paths.

Examples:

%% la. no constant
{config, "/home/testuser/tests/config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, "/home/testuser/tests/suites", all}.

%% lb. with constant

{define, 'TESTDIR', "/home/testuser/tests"}.

{config, "'TESTDIR'/config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, "'TESTDIR'/suites", all}.

%% 2a. no constants
{config, [testnode@hostl, testnode@host2], "../config", ["nodeA.cfg","nodeB.cfg"]}.
{suites, [testnode@hostl, testnode@host2], "../suites", [x SUITE, y SUITE]}.

%% 2b. with constants

{define, 'NODE', testnode}.

{define, 'NODES', ['NODE'@hostl, 'NODE'@host2]}.

{config, 'NODES', "../config", ["nodeA.cfg","nodeB.cfg"l}.
{suites, 'NODES', "../suites", [x SUITE, y SUITE]}.

Constants make the test specification term al i as, in previous versions of Common Test , redundant. Thisterm is
deprecated but remains supported in upcoming Conmron Test releases. Replacing al i as terms with def i ne is
strongly recommended though. An example of such replacement follows:

Ericsson AB. All Rights Reserved.: Common Test | 47

1.8 Running Tests and Analyzing Results

%% using the old alias term

{config, "/home/testuser/tests/config/nodeA.cfg"}.
{alias, suite dir, "/home/testuser/tests/suites"}.
{groups, suite dir, x SUITE, groupl}.

%% replacing with constants

{define, 'TestDir', "/home/testuser/tests"}.
{define, 'CfgDir', "'TestDir'/config"}.
{define, 'SuiteDir', "'TestDir'/suites"}.
{config, 'CfgDir', "nodeA.cfg"}.

{groups, 'SuiteDir', x SUITE, groupl}.

Constants can well replace term node also, but this still has a declarative value, mainly when used in combination
with NodeRef s == al | _nodes (see Types).

Example

Here follows a simple test specification example:

{define, 'Top', "/home/test"}.
{define, 'T1', "'Top'/tl"}.
{define, 'T2', "'Top'/t2"}.
{define, 'T3', "'Top'/t3"}.
{define, 'CfgFile', "config.cfg"}.

{logdir, "'Top'/logs"}.
{config, ["'T1'/'CfgFile'", "'T2'/'CfgFile'", "'T3'/'CfgFile'"]}.

{suites, 'T1', all}.

{skip suites, 'T1', [t1B SUITE,tl1D SUITE], "Not implemented"}.
{skip_cases, 'T1l', t1A SUITE, [test3,test4], "Irrelevant"}.
{skip_cases, 'T1l', t1C SUITE, [testl], "Ignore"}.

{suites, 'T2', [t2B SUITE,t2C SUITE]}.
{cases, 'T2', t2A SUITE, [test4,testl,test7]}.

{skip suites, 'T3', all, "Not implemented"}.

The example specifies the following:

* Thespecified | ogdi r directory isused for storing the HTML log files (in subdirectories tagged with node
name, date, and time).

e Thevariablesin the specified test system configuration files are imported for the test.

* Thefirst test to runincludes all suitesfor systemt 1. Suitest 1B and t 1D are excluded from the test. Test cases
test3andtest4int 1Aandt est 1 caseint 1Care also excluded from the test.

e Thesecondtesttorunisfor systemt 2. Theincluded suitesaret 2Bandt 2C. Test casest est 4,t est 1, and
t est 7 insuitet 2A are also included. The test cases are executed in the specified order.

 Thelasttest torunisfor systemt 3. Here, all suites are skipped and thisis explicitly noted in the log files.
The init Term

With term i ni t it is possible to specify initialization options for nodes defined in the test specification. There are
options to start the node and to evaluate any function on the node. For details, see section Automatic Sartup of Test
Target Nodes in section Using Common Test for Large Scale Testing.

48 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

User-Specific Terms

The user can provide atest specification including (for Cormbn Test) unrecognizable terms. If thisis desired, use
flag- al | ow_user _t er ns when startingtestswithct _r un. ThisforcesCommon Test toignoreunrecognizable
terms. In this mode, Common Test is not able to check the specification for errors as efficiently as if the scanner
runsin default mode. If ct : run_t est/ 1 isused for starting the tests, the relaxed scanner mode is enabled by tuple
{al |l ow_user _terns,true}.

Reading Test Specification Terms

Terms in the current test specification (that is, the specification that has been used to configure and run the current
test) can be looked up. The function get _t est spec_t er ns() returnsalist of all test specification terms (both
configuration terms and test terms), and get _t est spec_t er ms(Tags) returns the term (or a list of terms)
matching the tag (or tags) in Tags.

For example, in the test specification:

{label, my server smoke test}.
{config, "../../my server setup.cfg"}.
{config, "../../my server interface.cfg"}.

Andin, for example, atest suiteor aConmon Test Hook function:

[{label, [{ Node,TestType}1}, {config,CfgFiles}] =
ct:get testspec terms([label,configl),

[verify my server cfg(TestType, CfgFile) || {Node,CfgFile} <- CfgFiles,
Node == node()];

1.8.9 Running Tests from the Web-Based GUI

The web-based GUI, Virtual Test Server (VTS), is started with the ct _r un program. From the GUI, you can load
configuration files and select directories, suites, and casesto run. Y ou can also state the configuration files, directories,
suites, and cases on the command line when starting the web-based GUI.

Examples:

e ct_run -vts
e ct_run -vts -config <configfil ename>

e ct_run -vts -config <configfilenanme> -suite <suitew thfullpath> -case
<casenane>

From the GUI you can run tests and view the result and the logs.

ct _run -vts triestoopenthe Common Test start pagein an existing web browser window, or start the browser
if it is not running. Which browser to start can be specified with the browser start command option:

ct_run -vts -browser <browser_start_cnd>
Example:
$ ct_run -vts -browser 'firefox&

Ericsson AB. All Rights Reserved.: Common Test | 49

1.8 Running Tests and Analyzing Results

The browser must run as a separate OS process, otherwise VTS hangs.

If no specific browser start command is specified, Firefox is the default browser on Unix platforms, and Internet
Explorer on Windows. If Cormbn Test failsto start a browser automatically, or none is specified as the value
for - br owser (thatis, - br owser none), start your favourite browser manually and type the URL that Cormon
Test displaysin the shell.

1.8.10 Log Files

Asthe execution of the test suites proceed, events are logged in the following four different ways:

e Text to the operator console.

» Suite-related information is sent to the major log file.

* Case-related information is sent to the minor log file.

e TheHTML overview log fileis updated with test results.

* Alinkto all runs executed from acertain directory iswritten in thelog named al | _r uns. ht M and direct
linksto all tests (the latest results) are written to the top-level i ndex. ht i .

Typically the operator, possibly running hundreds or thousands of test cases, does not want to fill the console with
details about, or printouts from, specific test cases. By default, the operator only sees the following:

e A confirmation that the test has started and information about how many test cases are executed in total.

* A small note about each failed test case.

e A summary of al therun test cases.

* A confirmation when the test run is complete.

» Some special information, such as error reports, progress reports, and printouts written with
erl ang: di splay/ 1,ori o: f or mat/ 3 specifically addressed to areceiver other than st andar d_i o (for
example, the default group leader processuser).

To dig deeper into the general results, or the result of a specific test case, the operator can do so by following the links
inthe HTML presentation and read the major or minor log files. The "all_runs.html" page is a good starting point. It
islocatedin| ogdi r and containsalink to each test run, including a quick overview (with date and time, node name,
number of tests, test names, and test result totals).

An "index.html" page is written for each test run (that is, stored in the ct _r un directory tagged with node name,
date, and time). This file provides an overview of all individual tests performed in the same test run. The test names
follow the following convention:

e TopLevel Dir. Test Di r (al suitesin Test Di r executed)

e TopLevel Dir. Test Di r: sui t es (specific suites executed)

e TopLevel Dir. TestDir. Suite (al casesin Sui t e executed)

e TopLevel Dir. TestDir. Suite: cases (specific test cases executed)

e TopLevel Dir. TestDir. Suite. Case (only Case executed)

The "test run index" page includes a link to the Common Test Framework Log file in which information about

imported configuration data and general test progress is written. This log file is useful to get snapshot information
about the test run during execution. It can aso be helpful when analyzing test results or debugging test suites.

The "test run index" page indicates if atest has missing suites (that is, suitesthat Cormon Test failed to compile).
Names of the missing suites can be found in the Common Test Framework Log file.

The major log file shows a detailed report of the test run. It includes test suite and test case names, execution time,
the exact reason for failures, and so on. The information is available in both a file with textual and with HTML

50 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

representation. The HTML file shows a summary that gives a good overview of the test run. It also has links to each
individual test caselog file for quick viewing with an HTML browser.

The minor log files contain full details of every single test case, each in a separatefile. Thisway, it is straightforward
to compare the latest results to that of previous test runs, even if the set of test cases changes. If application SASL is
running, itslogs are also printed to the current minor log file by the cth_log_redirect built-in hook.

The full name of the minor log file (that is, the name of the file including the absolute directory path) can be read
during execution of the test case. It comesasvalueintuple{tc_I| ogfil e, LogFi | eNane} inthe Confi g list
(which means it can also be read by a pre- or post Conmon Test Hook function). Also, at the start of atest case,
this data is sent with an event to any installed event handler. For details, see section Event Handling.

Thelog filesare written continuously during atest run and links are always created initially when atest starts. Thevtest
progress can therefore be followed simply by refreshing pagesinthe HTML browser. Statisticstotals are not presented
until atest is complete however.

Log Options

With start flag | ogopt s options that modify some aspects of the logging behavior can be specified. The following
options are available;

no_src

The HTML version of the test suite source code is not generated during the test run (and is consequently not
availablein thelog file system).

no_nl

Conmon Test doesnot add anewline character (\ n) tothe end of an output string that it receives from acall
to, for example, i o: f or mat / 2, and which it prints to the test case log.

For example, if atest is started with:

$ ct _run -suite my_SUITE -1 ogopts no_src

then printouts during the test made by successive callstoi o: f or mat (" x") , appearsin the test case log as:
XXX

instead of each x printed on anew line, which isthe default behavior.

Sorting HTML Table Columns

By clicking the name in the column header of any table (for example, "Ok", "Case", "Time", and so on), the table
rows are sorted in whatever order makes sense for the type of value (for example, numerical for "Ok" or "Time", and
alphabetical for "Case"). The sorting is performed through JavaScript code, automatically inserted into the HTML
log files. Conmon Test usesthejQuery library and the tablesorter plugin, with customized sorting functions, for
thisimplementation.

The Unexpected I/0 Log

The test suites overview page includes alink to the Unexpected 1/0 Log. Inthislog, Commbn Test saves printouts
madewithct : | og/ 1, 2, 3, 4, 5andct : pal / 1, 2, 3, 4, 5, aswell ascaptured system error- and progressreports,
which cannot be associated with particular test cases and therefore cannot be written to individual test case log files.
This occurs, for example, if alog printout is made from an external process (not atest case process), or if an error- or
progress report comes in, during a short interval while Cormon Test is not executing a test case or configuration
function, or while Common Test iscurrently executing a parallel test case group.

The Pre- and Post Test I/0 Log

The Cormon Test Framework Log page includes links to the Pre- and Post Test 1/0 Log. In this log, Cormon
Test saves printouts made with ct: 1 og/ 1,2, 3,4,5and ct: pal /1, 2, 3, 4, 5, as well as captured system

Ericsson AB. All Rights Reserved.: Common Test | 51

href
href

1.8 Running Tests and Analyzing Results

error- and progress reports, which take place before, and after, the test run. Examples of this are printouts from aCT
hook init- or terminate function, or progress reports generated when an OTP application is started from a CT hook init
function. Another example is an error report generated because of a failure when an external application is stopped
from a CT hook terminate function. All information in these examples ends up in the Pre- and Post Test I/O Log.
For more information on how to synchronize test runs with external user applications, see section Synchronizing in
section Common Test Hooks.

Logging to filewith ct: 1 0og/ 1, 2, 3,4,5 or ct: pal / 1, 2, 3, 4, 5 only works when Cormbn Test is
running. Printoutswith ct : pal / 1, 2, 3, 4, 5 are however aways displayed on screen.

Delete Old Logs

Conmmon Test can automatically delete old log. Thisis specified with the keep_| ogs option. The default value
for thisoptionisal | , which meansthat no logs are deleted. If the valueis set to aninteger, N, Conmon Test deletes
alct _run. <ti nmest anp> directories, except the N newest.

1.8.11 HTML Style Sheets

Common Test usesan HTML Style Sheet (CSSfile) to control the look of the HTML log files generated during test
runs. If the log files are not displayed correctly in the browser of your choice, or you prefer a more primitive ("pre
Common Test v1.6") look of the logs, use the start flag/option:

basic_html

This disables the use of style sheets and JavaScripts (see Sorting HTML Table Columns).

Conmon Test includesan optional featureto allow user HTML style sheetsfor customizing printouts. Thefunctions
inct that print to atest case HTML log file (I og/ 3, 4, 5 and pal / 3, 4, 5) accept Cat egor y asfirst argument.
With this argument a category can be specified that can be mapped to anamed di v selector inaCSSrule-set. Thisis
useful, especialy for coloring text differently depending on the type of (or reason for) the printout. Say you want one
particular background color for test system configuration information, adifferent one for test system stateinformation,
and finally one for errors detected by the test case functions. The corresponding style sheet can look as follows:

div.sys config { background:blue }
div.sys state { background:yellow }
div.error { background:red }

Common Test prints the text from ct : | og/ 3, 4,5 or ct: pal /3, 4, 5 inside a pr e element nested under the
named di v element. Since the pr e selector has a predefined CSSrule(infilect _def aul t . css) for the attributes
color,font-fam |y andfont-size,if auser wantsto change any of the predefined attribute settings, a new
rule for pr e must be added to the user stylesheet. Example:

div.error pre { color:white }

Here, white text is used instead of the default black for di v. err or printouts (and no other attribute settings for
pr e are affected).

Toinstall the CSSfile (Cormbn Test inlinesthe definition inthe HTML code), the file name can be provided when
executing ct _r un.

Example:

52 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

$ ct run -dir $TEST/prog -stylesheet $TEST/styles/test categories.css

Categories in a CSS file installed with flag - st yl esheet are on a global test level in the sense that they can be
used in any suitethat is part of the test run.

Style sheets can also be installed on a per suite and per test case basis.
Example:

-module(my SUITE).
suite() -> [..., {stylesheet,"suite categories.css"}, ...].

my testcase() ->

ct:log(sys config, "Test node version: ~p", [VersionInfo]),

ct:log(sys state, "Connections: ~p", [ConnectionInfol]),

ct:pal(error, "Error ~p detected! Info: ~p", [SomeFault,ErrorInfol),
ct:fail(SomeFault).

If the style sheet isinstalled asin this example, the categories are private to the suite in question. They can be used by
all test casesin the suite, but cannot be used by other suites. A suite private style sheet, if specified, isused in favor of
aglobal style sheet (one specified withflag - st yl esheet). A stylesheet tuple (asreturned by sui t e/ 0 above) can
also be returned from atest case information function. In this case the categories specified in the style sheet can only
be used in that particular test case. A test case private style sheet isused in favor of a suite or global level style sheet.

In atuple {styl esheet, CSSFi | e}, if CSSFi | e is specified with a path, for example, " $TEST/ st yl es/
cat egori es. css", thisfull nameisusedtolocatethefile. However, if only thefile nameis specified, for example,
cat egori es. css, the CSSfileis assumed to be located in the data directory, dat a_di r, of the suite. The latter
use is recommended, asit is portable compared to hard coding path names in the suite.

Argument Cat egory in the previous example can have the value (atom) sys_confi g (blue background),
sys_st at e (yellow background), or er r or (white text on red background).

1.8.12 Repeating Tests

You can order Common Test to repeat the tests you specify. You can choose to repeat tests a number of times,
repeat testsfor a specific period of time, or repeat tests until aparticular stop timeisreached. If repetition is controlled
by time, an action for Conmon Test to take upon time-out can be specified. Either Conon Test performs all
tests in the current run before stopping, or it stops when the current test job is finished. Repetition can be activated
by ct _run start flags, or tuplesinthect : run: t est / 1 option list argument. The flags (options in parentheses)
arethefollowing:

e -repeat N ({repeat, N}),whereNisapositiveinteger

e -duration DurTine ({duration, DurTi nme}),whereDur Ti me isthe duration

e -until StopTinme ({until, StopTi ne}),whereStopTi ne isfinishtime

« -force_stop ({force_stop,true})

e -force_stop skip rest ({force_stop,skip rest})

Dur Ti me

The duration timeis specified as HHMVBS, for example, - dur at i on 012030 or{ dur ati on, "012030"}

, which means that the tests are executed and (if time allows) repeated until time-out occurs after 1 hour, 20
minutes, and 30 seconds.

Ericsson AB. All Rights Reserved.: Common Test | 53

1.8 Running Tests and Analyzing Results

St opTi e

The finish time can be specified as HHVMMSS and is then interpreted as a time today (or possibly
tomorrow), but can also be specified as YYMoMoDDHHMWMVES, for example, -until 071001120000 or
{until,"071001120000"}. This means that the tests are executed and (if time allows) repeated, until 12
o'clock on the 1st of October 2007.

When time-out occurs, Conmron Test never aborts the ongoing test case, asthis can leave the SUT in an undefined,
and possibly bad, state. Instead Common Test , by default, finishes the current test run before stopping. If flag
force_stop is specified, Conmon Test stops when the current test job is finished. If flag f or ce_st op is
specified with ski p_r est, Cormon Test only completes the current test case and skips the remaining tests in
the test job.

As Common Test always finishes at least the current test case, the time specified with dur ati on or unti |
is never definitive.

Log files from every repeated test runis saved in normal Conmron Test fashion (described earlier).

Conmon Test might later support an optional feature to only store the last (and possibly the first) set of logs of
repeated test runs, but for now the user must be careful not to run out of disk space if tests are repeated during long
periods of time.

For each test run that is part of a repeated session, information about the particular test run is printed in the Conmron
Test Framework Log. The information includes the repetition number, remaining time, and so on.

Example 1.

$ ct run -dir $TEST ROOT/tol $TEST ROOT/to2 -duration 001000 -force stop

Here, the suitesin test directory t 01, followed by the suitesin t 02, are executed in one test run. A time-out event
occurs after 10 minutes. Aslong asthereistime left, Cormon Test repeats the test run (that is, starting over with
testt 01). After time-out, Cormon Test stopswhen the current job isfinished (because of flag f or ce_st op). As
aresult, the specified test run can be aborted after test t 01 and beforetest t 02.

Example 2:

$ ct run -dir $TEST ROOT/tol $TEST ROOT/to2 -duration 001000 -forces stop skip rest

Here, the sametestsasin Example 1 arerun, but withflagf or ce_st op settoski p_r est . If time-out occurswhile
executing testsin directory t 01, the remaining test casesint 01 are skipped and the test is aborted without running
thetestsint 02 another time. If time-out occurs while executing tests in directory t 02, the remaining test casesin
t 02 are skipped and the test is aborted.

Example 3:
$ date
Fri Sep 28 15:00:00 MEST 2007
$ ct run -dir $TEST ROOT/tol $TEST ROOT/to2 -until 160000

Here, the same test run as in the previous examples are executed (and possibly repeated). However, when the time-
out occurs, after 1 hour, Conmon Test finishes the entire test run before stopping (that is, botht 01 and t 02 are
always executed in the same test run).

Example 4:

54 | Ericsson AB. All Rights Reserved.: Common Test

1.8 Running Tests and Analyzing Results

$ ct _run -dir $TEST ROOT/tol $TEST ROOT/to2 -repeat 5

Here, the test run, including both thet 01 and thet 02 test, isrepeated five times.

Do not confuse this feature with the r epeat property of atest case group. The options described here are used
to repeat execution of entire test runs, while ther epeat property of atest case group makes it possible to repeat
execution of sets of test cases within a suite. For more information about the latter, see section Test Case Groups
in section Writing Test Suites.

1.8.13 Silent Connections

The protocol handling processesin Conmon Test , implemented by ct _t el net, ct _ssh, ct _ftp, and soon,
do verbose printing to the test case logs. This can be switched off with flag - si | ent _connecti ons:

ct run -silent connections [conn_types]

Here, conn_t ypes specifies SSH, Telnet, FTP, RPC, and/or SNMP.

Example 1:

ct_run ... -silent_connections ssh telnet

This switches off logging for SSH and Telnet connections.
Example 2:

ct_run ... -silent_connections

This switches off logging for al connection types.

Fatal communication error and reconnection attempts are always printed, even if logging has been suppressed for the
connection type in question. However, operations such as sending and receiving data are performed silently.

sil ent _connecti ons can aso be specified in a test suite. This is accomplished by returning a tuple,
{sil ent _connections, ConnTypes},inthesui t e/ 0 ortest caseinformation list. If ConnTypes isalist of
atoms (SSH, Telnet, FTP, RPC and/or SNMP), output for any corresponding connections are suppressed. Full logging
is by default enabled for any connection of type not specified in ConnTypes. Hence, if ConnTypes is the empty
list, logging is enabled for all connections.

Example 3:

Ericsson AB. All Rights Reserved.: Common Test | 55

1.9 External Configuration Data

-module(my SUITE).

suite() -> [..., {silent connections,[telnet,ssh]l}, ...].

my testcasel() ->
[{silent connections,[ssh]}].

my testcasel() ->
my testcase2() ->

Inthisexample, sui t e/ 0 tellsCommon Test to suppress printouts from Telnet and SSH connections. Thisisvalid
for al test cases. However, ny_t est casel/ 0 specifiesthat for thistest case, only SSH isto besilent. Theresultis
that my _t est casel gets Telnet information (if any) printed in the log, but not SSH information. my_t est case2
gets no information from either connection printed.

si | ent _connecti ons can aso be specified with aterm in atest specification (see section Test Specificationsin
section Running Testsand Analyzing Results). Connections provided with start flag/optionsi | ent _connect i ons
are merged with any connections listed in the test specification.

Start flag/option si | ent _connecti ons and the test specification term override any settings made by the
information functions inside the test suite.

In the current Cormon Test version, the si | ent _connect i ons feature only works for Telnet and SSH
connections. Support for other connection types can be added in future Conmon Test versions.

1.9 External Configuration Data

1.9.1 General

To avoid hard-coding data values related to the test and/or System Under Test (SUT) in the test suites, the data can
instead be specified through configuration files or strings that Conmon Test reads before the start of a test run.
External configuration data makesit possible to change test properties without modifying the test suites using the data.
Examples of configuration data follows:

e Addressesto the test plant or other instruments

e User login information

e Names of files needed by the test

* Names of programs to be executed during the test
e Any other variable needed by the test

1.9.2 Syntax

A configuration file can contain any number of elements of the type:

{CfgVarName,Value}.

where

56 | Ericsson AB. All Rights Reserved.: Common Test

1.9 External Configuration Data

CfgVarName = atom()
Value = term() | [{CfgVarName,Value}]

1.9.3 Requiring and Reading Configuration Data

In atest suite, one must requir e that a configuration variable (Cf gVar Name in the previous definition) exists before
attempting to read the associated value in atest case or configuration function.

requi r e is an assert statement, which can be part of the Test Suite Information Function or Test Case Information
Function. If the required variable is unavailable, the test is skipped (unless a default value has been specified, see
section Test Case Information Function for details). Also, function ct : r equi r e/ 1/ 2 can be caled from a test
case to check if a specific variable is available. The return value from this function must be checked explicitly and
appropriate action be taken depending on the result (for example, to skip the test case if the variable in question does
not exist).

A require statement in the test suite information case or test case information-list is to look like
{require, CfgVar Nane} or {require, Al i asNanme, Cf gVar Nane}. The arguments Al i asNane and
Cf gVar Nane are the same as the arguments to ct: require/ 1, 2. Al i asNanme becomes an alias for the
configuration variable, and can be used as reference to the configuration data value. The configuration variable can be
associated with any number of alias names, but each name must be unique within the same test suite. The two main
uses for alias names follows:

e Toidentify connections (described later).
* To help adapt configuration datato atest suite (or test case) and improve readability.

To rea