| v

ERLANG

Erlang Interface

Copyright © 1998-2018 Ericsson AB. All Rights Reserved.
Erlang Interface 3.7.15

November 2, 2018

Copyright © 1998-2018 Ericsson AB. All Rights Reserved.

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. Ericsson AB. All Rights
Reserved..

November 2, 2018

1.1 The El Library User's Guide

1 El User's Guide

1.1 The El Library User's Guide

The Erl_Interfacelibrary containsfunctions. which help you integrate programswrittenin C and Erlang. The functions
in Erl_Interface support the following:

* manipulation of data represented as Erlang data types

e conversion of data between C and Erlang formats

« encoding and decoding of Erlang data types for transmission or storage

e communication between C nodes and Erlang processes

* backup and restore of C node state to and from Mnesia

In the following sections, these topics are described:

e compiling your code for use with Erl_Interface
e initializing Erl_Interface

* encoding, decoding, and sending Erlang terms
e building terms and patterns

e pattern matching

e connecting to adistributed Erlang node

e using EPMD

» sending and receiving Erlang messages

e remote procedure calls

* globa names

e theregistry

1.1.1 Compiling and Linking Your Code

In order to use any of the Erl_Interface functions, include the following linesin your code:

#include "erl interface.h"
#include "ei.h"

Determine where the top directory of your OTP installation is. Y ou can find this out by starting Erlang and entering
the following command at the Eshell prompt:

Eshell V4.7.4 (abort with ~G)
1> code:root dir().
/usr/local/otp

To compile your code, make sure that your C compiler knows whereto finder | _i nt er f ace. h by specifying an
appropriate - | argument on the command line, or by adding it to the CFLAGS definition in your Makefi | e. The
correct value for this path is $OTPROOT/ | i b/ er| _i nt er f aceVsn/ i ncl ude, where $OTPROCT is the path

Ericsson AB. All Rights Reserved.: Erlang Interface | 1

1.1 The El Library User's Guide

reported by code: r oot _di r/ 0 in the above example, and Vsn is the version of the Erl_interface application, for
exampleer| _interface-3.2.3

$ cc -c -I/usr/local/otp/lib/erl interface-3.2.3/include myprog.c

When linking, you will need to specify the path to liberl _interface.a and |ibei.a with -L
$OTPROOT/ i b/ erl _interface-3.2.3/1ib,andyou will need to specify the name of the libraries with -
lerl _interface -Iei.Youcando thisonthecommand lineor by adding the flags to the LDFLAGS definition
inyour Makefil e.

$ Ud -L/usr/local/otp/lib/erl _interface-3.2.3/
lib myprog.o -lerl interface -lei -o myprog

Also, on some systemsit may be necessary to link with some additional libraries(e.g.l i bnsl . aandl i bsocket . a
on Solaris, or wsock32. | i b on Windows) in order to use the communication facilities of Erl_Interface.

If you are using Erl_Interface functions in a threaded application based on POSIX threads or Solaris threads, then
Erl_Interface needs access to some of the synchronization facilities in your threads package, and you will need to
specify additional compiler flagsin order to indicate which of the packages you are using. Define_ REENTRANT and
either STHREADS or PTHREADS. The default isto use POSIX threads if REENTRANT is specified.

1.1.2 Initializing the erl_interface Library

Before calling any of the other Erl_Interface functions, you must call er| _i ni t () exactly once to initiaize the
library. erl _i ni t () takestwo arguments, however the arguments are no longer used by Erl_Interface, and should
therefore be specifiedaser | _i ni t (NULL, 0) .

1.1.3 Encoding, Decoding and Sending Erlang Terms

Data sent between distributed Erlang nodesis encoded in the Erlang external format. Consequently, you haveto encode
and decode Erlang terms into byte streams if you want to use the distribution protocol to communicate between a C
program and Erlang.

The Erl_Interface library supports this activity. It has a number of C functions which create and manipulate Erlang
data structures. The library also contains an encode and a decode function. The example below shows how to create
and encode an Erlang tuple { t obbe, 3928} :

ETERM *arr[2], *tuple;
char buf[BUFSIZ];

int i;

arr[0] = erl mk atom("tobbe");
arr[1] = erl mk integer(3928);
tuple = erl mk tuple(arr, 2);

i = erl _encode(tuple, buf);

Alternatively, you can use er | _send() and er| _r ecei ve_nsg, which handle the encoding and decoding of
messages transparently.

Refer to the Reference Manual for a complete description of the following modules:

* theer| _et er mmodulefor creating Erlang terms

2 | Ericsson AB. All Rights Reserved.: Erlang Interface

1.1 The El Library User's Guide

e theerl _mar shal modulefor encoding and decoding routines.

1.1.4 Building Terms and Patterns

The previous example can be smplified by usinger | _f or mat () to create an Erlang term.
ETERM *ep;
ep = erl format("{~a,~i}", "tobbe", 3928);

Refer to the Reference Manual, the er | _f or mat module, for a full description of the different format directives.
The following example is more complex:

ETERM *ep;

ep = erl format("[{name,~a},{age,~i},{data,~w}]",
"madonna",
21,

erl format("[{adr,~s,~i}]", "E-street", 42));
erl free compound(ep);

As in previous examples, it is your responsibility to free the memory alocated for Erlang terms. In this example,
erl _free_conpound() ensuresthat the complete term pointed to by ep isreleased. Thisis necessary, because
the pointer from the second call toer | _f or mat () islost.

The following example shows a dlightly different solution:

ETERM *ep, *ep2;

ep2 erl format("[{adr,~s,~i}]","E-street",42);

ep erl format("[{name,~a},{age,~i},{data,~w}1",
"madonna", 21, ep2);

erl free term(ep);

erl free term(ep2);

Inthis case, you free the two termsindependently. The order in which you freethetermsep and ep2 is not important,
because the Erl_Interface library uses reference counting to determine when it is safe to actually remove objects.

If you are not sure whether you have freed the terms properly, you can use the following function to see the status
of the fixed term alocator:

long allocated, freed;

erl_eterm statistics(&allocated,&freed);
printf("currently allocated blocks: %ld\n",allocated);
printf("length of freelist: %ld\n",freed);

/* really free the freelist */
erl eterm release();

Refer to the Reference Manual, theer | _rmal | oc module for more information.

Ericsson AB. All Rights Reserved.: Erlang Interface | 3

1.1 The El Library User's Guide

1.1.5 Pattern Matching

An Erlang pattern is aterm that may contain unbound variablesor "do not care" symbols. Such a pattern can
be matched against aterm and, if the match is successful, any unbound variables in the pattern will be bound asa side
effect. The content of a bound variable can then be retrieved.

ETERM *pattern;
pattern = erl format("{madonna,Age, }");

erl _mat ch() isused to perform pattern matching. It takes a pattern and a term and tries to match them. Asaside
effect any unbound variablesin the pattern will be bound. In the following example, we create a pattern with avariable
Age which appears at two positionsin the tuple. The pattern match is performed as follows:

e erl_match() will bind the contents of Ageto 21 thefirst timeit reaches the variable

» the second occurrence of Age will cause atest for equality between the terms since Age is already bound to 21.
Since Ageis bound to 21, the equality test will succeed and the match continues until the end of the pattern.

« if theend of the pattern is reached, the match succeeds and you can retrieve the contents of the variable

ETERM *pattern, *term;

pattern = erl format("{madonna,Age,Age}");

term = erl format("{madonna,21,21}");

if (erl match(pattern, term)) {
fprintf(stderr, "Yes, they matched: Age = ");
ep = erl var _content(pattern, "Age");
erl print term(stderr, ep);
fprintf(stderr,"\n");
erl free term(ep);

erl free term(pattern);
erl free term(term);

Refer to the Reference Manual, theer | _mat ch() function for more information.

1.1.6 Connecting to a Distributed Erlang Node

In order to connect to a distributed Erlang node you need to first initialize the connection routine with
erl _connect _i nit (), which storesinformation such as the host name, node name, and |P address for later use:

int identification number = 99;

int creation=1;

char *cookie="a secret cookie string"; /* An example */
erl connect init(identification number, cookie, creation);

Refer to the Reference Manual, theer | _connect module for more information.

After initialization, you set up the connection to the Erlang node. Useer | _connect () to specify the Erlang node
you want to connect to. The following exampl e sets up the connection and should result in avalid socket file descriptor:

int sockfd;
char *nodename="xyz@chivas.du.etx.ericsson.se"; /* An example */
if ((sockfd = erl connect(nodename)) < 0)

4 | Ericsson AB. All Rights Reserved.: Erlang Interface

1.1 The El Library User's Guide

erl err quit("ERROR: erl connect failed");

erl _err_quit() printsthe specified string and terminates the program. Refer to the Reference Manual, the
erl _error () functionfor moreinformation.

1.1.7 Using EPMD

Epnd isthe Erlang Port Mapper Daemon. Distributed Erlang nodes register with epnd on the localhost to indicate to
other nodesthat they exist and can accept connections. Epnd maintainsaregister of node and port number information,
and when a node wishes to connect to another node, it first contacts epnd in order to find out the correct port number
to connect to.

Whenyou useer| _connect () to connect to an Erlang node, a connection is first made to epnd and, if the node
is known, a connection is then made to the Erlang node.

C nodes can also register themselves with epind if they want other nodesin the system to be able to find and connect
to them.

Before registering with epntd, you need to first create a listen socket and bind it to a port. Then:

int pub;

pub = erl publish(port);

pub isafile descriptor now connected to epnd. Epnd monitors the other end of the connection, and if it detects that
the connection has been closed, the node will be unregistered. So, if you explicitly close the descriptor or if your node
fails, it will be unregistered from epnd.

Be aware that on some systems (such as VxWorks), a failed node will not be detected by this mechanism since the
operating system does not automatically close descriptors that were left open when the node failed. If anode hasfailed
in this way, epnd will prevent you from registering a new node with the old name, since it thinks that the old name
isdtill in use. In this case, you must unregister the name explicitly:

erl_unpublish(node);

Thiswill cause epnd to close the connection from the far end. Note that if the name was in fact till in use by anode,
the results of this operation are unpredictable. Also, doing this does not cause the local end of the connection to close,
SO resources may be consumed.

1.1.8 Sending and Receiving Erlang Messages
Use one of the following two functions to send messages:

e erl_send()
« erl_reg_send()

AsinErlang, itispossibleto send messagesto aPid or to aregistered name. It iseasier to send amessageto aregistered
name because it avoids the problem of finding a suitable Pid.

Use one of the following two functions to receive messages:

 erl_receive()
« erl_receive_nsg()

Ericsson AB. All Rights Reserved.: Erlang Interface | 5

1.1 The El Library User's Guide

erl _receive() receivesthe message into a buffer, whileer| _recei ve_nsg() decodes the message into an
Erlang term.

Example of Sending Messages

In the following example, { Pi d, hel | o_wor | d} is sent to aregistered process my_ser ver . The message is
encoded by er| _send():

extern const char *erl thisnodename(void);

extern short erl thiscreation(void);

#define SELF(fd) erl mk pid(erl thisnodename(),fd,0,erl thiscreation())
ETERM *arr[2], *emsg;

int sockfd, creation=1;

arr[0@] = SELF(sockfd);
arr[1] = erl mk atom("Hello world");
emsg = erl mk tuple(arr, 2);

erl reg send(sockfd, "my server", emsg);
erl free term(emsg);

Thefirst element of the tuple that is sent is your own Pid. Thisenablesmy_ser ver toreply. Refer to the Reference
Manual, theer | _connect module for more information about send primitives.

Example of Receiving Messages
Inthisexample{ Pi d, Somet hi ng} isreceived. Thereceived Pid isthen used to return { goodbye, Pi d}

ETERM *arr[2], *answer;
int sockfd,rc;

char buf[BUFSIZE];
ErlMessage emsg;

if ((rc = erl receive msg(sockfd , buf, BUFSIZE, &emsg)) == ERL MSG) {

arr[0] = erl mk atom("goodbye");
arr[1] = erl element(1l, emsg.msg);
answer = erl mk tuple(arr, 2);

erl send(sockfd, arr[1], answer);
erl free term(answer);

erl free term(emsg.msg);

erl free term(emsg.to);

In order to providerobustness, adistributed Erlang node occasionally pollsall its connected neighboursin an attempt to
detect failed nodes or communication links. A node which receives such amessage is expected to respond immediately
with an ERL_TI CK message. This is done automatically by er| _r ecei ve() , however when this has occurred
erl _recei ve returns ERL_TI CK to the caller without storing a message into the Er | Message structure.

When a message has been received, it isthe caller's responsibility to free the received message ensg. nsg aswell as
ensg. t o orensg. f r om depending on the type of message received.

Refer to the Reference Manual for additional information about the following modules:

e erl_connect
e erl_eterm

6 | Ericsson AB. All Rights Reserved.: Erlang Interface

1.1 The El Library User's Guide

1.1.9 Remote Procedure Calls

An Erlang node acting as aclient to another Erlang node typically sends arequest and waitsfor areply. Such arequest
isincluded in afunction call at a remote node and is called a remote procedure call. The following example shows
how the Erl_Interface library supports remote procedure calls:

char modname[]=THE MODNAME;
ETERM *reply, *ep;
ep = erl format("[~a,[]]", modname);
if (!'(reply = erl rpc(fd, "c", "c", ep)))
erl err _msg("<ERROR> when compiling file: %s.erl !\n", modname);
erl free term(ep);
ep = erl format("{ok, }");
if ('erl match(ep, reply))
erl err _msg("<ERROR> compiler errors !\n");
erl free term(ep);
erl free term(reply);

c: c/ 1 iscalled to compile the specified module on the remote node. er | _rmat ch() checks that the compilation
was successful by testing for the expected ok.

Refer to the Reference Manual, the er| _connect module for more information about er|l _rpc(), and its
companionser| _rpc_to() anderl _rpc_fron().

1.1.10 Using Global Names

A C node has access to names registered through the Erlang Globa module. Names can be looked up, alowing the
C node to send messages to named Erlang services. C nodes can also register global names, allowing them to provide
named servicesto Erlang processes or other C nodes.

Erl_Interface doesnot provide anativeimplementation of theglobal service. Instead it usestheglobal servicesprovided
by a"nearby" Erlang node. In order to usethe servicesdescribed in this section, it isnecessary to first open aconnection
to an Erlang node.

To see what names there are:

char **names;
int count;
int i;

names = erl global names(fd,&count);

if (names)
for (i=0; i<count; i++)
printf("ss\n",names[i]);

free(names);

erl _gl obal _names() alocates and returns a buffer containing al the names known to global. count will be
initialized to indicate how many namesarein thearray. The array of stringsin namesisterminated by aNULL pointer,
so it is hot necessary to use count to determine when the last name is reached.

It is the caller's responsibility to free the array. er | _gl obal _nanes() allocates the array and all of the strings
usingasinglecal tormal | oc(), sof r ee(nanes) isall that is necessary.

To look up one of the names:

Ericsson AB. All Rights Reserved.: Erlang Interface | 7

1.1 The El Library User's Guide

ETERM *pid;
char node[256];

pid = erl global whereis(fd,"schedule", node);

If "schedul e" is known to global, an Erlang pid is returned that can be used to send messages to the schedule
service. Additionally, node will beinitialized to contain the name of the node where the serviceis registered, so that
you can make a connection to it by simply passing the variabletoer | _connect ().

Before registering a name, you should already have registered your port number with epnd. This is not strictly
necessary, but if you neglect to do so, then other nodes wishing to communicate with your service will be unable to
find or connect to your process.

Create apid that Erlang processes can use to communicate with your service:

ETERM *pid;

pid = erl mk pid(thisnode,14,0,0);

erl global register(fd,servicename,pid);
After registering the name, you should useer | _accept () towait for incoming connections.
Do not forget to free pi d later wither| _free_tern()!
To unregister aname:

erl_global unregister(fd,servicename);

1.1.11 The Registry

This section describes the use of the registry, a simple mechanism for storing key-value pairs in a C-node, as well
as backing them up or restoring them from a Mnesia table on an Erlang node. More detailed information about the
individual API functions can be found in the Reference Manual.

Keysarestrings, i.e. O-terminated arrays of characters, and values are arbitrary objects. Although integers and floating
point numbers are treated specially by the registry, you can store strings or binary objects of any type as pointers.

To start, you need to open aregistry:

ei reg *reg;

reg = ei_reg_open(45);

The number 45 in the example indicates the approximate number of objects that you expect to store in the registry.
Internally the registry uses hash tables with collision chaining, so there is no absolute upper limit on the number of
objects that the registry can contain, but if performance or memory usage are important, then you should choose a
number accordingly. The registry can be resized |ater.

Y ou can open as many registries as you like (if memory permits).

Objectsare stored and retrieved through set and get functions. In the following examples you see how to storeintegers,
floats, strings and arbitrary binary objects:

8 | Ericsson AB. All Rights Reserved.: Erlang Interface

1.1 The El Library User's Guide

struct bonk *b = malloc(sizeof(*b));
char *name = malloc(7);

el reg setival(reg,"age",29);
ei reg setfval(reg,"height",1.85);

strcpy(name, "Martin");
el reg setsval(reg, "name",name);

b->1 = 42;
b->m = 12;
el reg setpval(reg,"jox",b,sizeof(*b));

If you attempt to store an object in the registry and there is an existing object with the same key, the new value will
replace the old one. This is done regardless of whether the new object and the old one have the same type, so you
can, for example, replace a string with an integer. If the existing value is a string or binary, it will be freed before
the new valueis assigned.

Stored values are retrieved from the registry as follows:

long 1i;

double f;

char *s;

struct bonk *b;
int size;

ei reg getival
ei reg getfval
ei reg getsval
ei reg getpval

reg, "age");

reg, "height");
reg, "name") ;
reg,"jox",&size);

T n —h -
i uwn
o o o o

In all of the above examples, the object must exist and it must be of the right type for the specified operation. If you
do not know the type of a given object, you can ask:

struct ei reg stat buf;

ei reg stat(reg,"name",&buf);

Buf will beinitialized to contain object attributes.
Objects can be removed from the registry:

ei reg delete(reg, "name");

When you are finished with aregistry, close it to remove all the objects and free the memory back to the system:

el reg close(reg);

Ericsson AB. All Rights Reserved.: Erlang Interface | 9

1.1 The El Library User's Guide

Backing Up the Registry to Mnesia

The contents of a registry can be backed up to Mnesia on a "nearby" Erlang node. You need to provide an open
connection to the Erlang node (seeer | _connect ()). Also, Mnesia 3.0 or later must be running on the Erlang node
before the backup isinitiated:

ei reg dump(fd, reg, "mtab", dumpflags);

The example above will backup the contents of the registry to the specified Mnesiatable” nt ab"” . Oncearegistry has
been backed up to Mnesiain this manner, additional backupswill only affect objects that have been modified since the
most recent backup, i.e. objects that have been created, changed or deleted. The backup operation is done as asingle
atomic transaction, so that the entire backup will be performed or none of it will.

In the same manner, aregistry can be restored from aMnesiatable;

ei reg restore(fd, reg, "mtab");

This will read the entire contents of " nt ab" into the specified registry. After the restore, al of the objects in the
registry will be marked as unmodified, so a subsegquent backup will only affect objects that you have modified since
therestore.

Notethat if you restore to anon-empty registry, objectsin the table will overwrite objectsin the registry with the same
keys. Also, the entire contents of the registry ismarked as unmodified after the restore, including any modified objects
that were not overwritten by the restore operation. This may not be your intention.

Storing Strings and Binaries
When string or binary objects are stored in the registry it isimportant that a number of simple guidelines are followed.

Most importantly, the object must have been created with asingle call tomal | oc() (or similar), so that it can later
be removed by asinglecall tof r ee() . Objectswill be freed by the registry when it is closed, or when you assign a
new value to an object that previously contained a string or binary.

Y ou should also be aware that if you store binary objects that are context-dependent (e.g. containing pointers or open
file descriptors), they will lose their meaning if they are backed up to a Mnesia table and subsequently restored in
adifferent context.

When you retrieve a stored string or binary value from the registry, the registry maintains a pointer to the object and
you are passed a copy of that pointer. You should never free an object retrieved in this manner because when the
registry later attempts to freeit, aruntime error will occur that will likely cause the C-node to crash.

Y ou are free to modify the contents of an object retrieved this way. However when you do so, the registry will not be
aware of the changes you make, possibly causing it to be missed the next time you make aMnesiabackup of theregistry
contents. This can be avoided if you mark the object as dirty after any such changeswithei _reg _markdirty(),
or pass appropriate flagstoei _reg_dunp() .

10 | Ericsson AB. All Rights Reserved.: Erlang Interface

1.1 The El Library User's Guide

2 Reference Manual

Theei anderl _i nterface are Cinterface libraries for communication with Er | ang.

Note:

By default, theei ander| _i nt er f ace librariesare only guaranteed to be compatible with other Erlang/OTP
components from the same release as the libraries themself. See the documentation of the ei_set_compat_rel()
and erl_set_compat_rel() functions on how to communicate with Erlang/OTP components from earlier rel eases.

Ericsson AB. All Rights Reserved.: Erlang Interface | 11

ei

ei
C Library

Thelibrary ei contains macros and functions to encode and decode the erlang binary term format.

With ei , you can convert atoms, lists, numbers and binaries to and from the binary format. This is useful when
writing port programs and drivers. ei uses a given buffer, and no dynamic memory (with the exception of
ei _decode_fun()), andis often quite fast.

It also handles C-nodes, C-programsthat talks erlang distribution with erlang nodes (or other C-nodes) using the erlang
distribution format. Thedifferencebetweenei ander| _i nt er f ace isthatei usesthebinary format directly when
sending and receiving terms. It is also thread safe, and using threads, one process can handle multiple C-nodes. The
erl _interfacelibraryisbuiltontop of ei , but of legacy reasons, it doesn't allow for multiple C-nodes. In general,
ei isthe preferred way of doing C-nodes.

The decode and encode functions use a buffer an index into the buffer, which points at the point where to encode and
decode. Theindex is updated to point right after the term encoded/decoded. No checking is done whether the term fits
in the buffer or not. If encoding goes outside the buffer, the program may crash.

All functionstakes two parameter, buf isapointer to the buffer where the binary datais/ will be, i ndex isapointer
to an index into the buffer. This parameter will be incremented with the size of the term decoded / encoded. The data
isthusat buf [*i ndex] whenanei functioniscalled.

The encode functions all assumes that the buf and i ndex parameters points to a buffer big enough for the data. To
get the size of an encoded term, without encoding it, pass NULL instead of a buffer pointer. The i ndex parameter
will beincremented, but nothing will be encoded. Thisistheway inei to "preflight" term encoding.

There are aso encode-functions that uses a dynamic buffer. It is often more convenient to use these to encode data.
All encode functions comesin two versions: those starting with ei _x, uses a dynamic buffer.

All functions return O if successful, and - 1 if not. (For instance, if aterm is not of the expected type, or the data to
decode is not avalid erlang term.)

Some of the decode-functions needs a preallocated buffer. This buffer must be allocated big enough, and for non
compound typestheei _get _t ype() function returnsthe size required (note that for strings an extra byte is needed
for the 0 string terminator).

DATA TYPES

erlang_char_encoding

typedef enum {
ERLANG ASCII = 1,
ERLANG LATIN1 = 2,
ERLANG UTF8 = 4
Yerlang char encoding;

The character encodings used for atoms. ERLANG_ASCI | represents 7-bit ASCII. Latinl and UTF8 aredifferent
extensions of 7-bit ASCII. All 7-bit ASCII characters are valid Latinl and UTF8 characters. ASCII and Latinl
both represent each character by one byte. A UTF8 character can consist of one to four bytes. Note that these
constants are hit-flags and can be combined with bitwise-or.

12 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei

Exports

void ei set compat rel(release number)
Types.
unsi gned rel ease_nunber;

By default, the ei library is only guaranteed to be compatible with other Erlang/OTP components from the same
release astheei library itself. For example, ei from the OTP R10 release is not compatible with an Erlang emulator
from the OTP RO release by default.

A cal to ei _set_conpat _rel (rel ease_nunber) sets the ei library in compatibility mode of release
rel ease_nunber. Valid range of rel ease_nunber is [7, current release]. This makes it possible to
communicate with Erlang/OTP components from earlier releases.

Note:

If this function is called, it may only be called once and must be called before any other functions in the ei
library is called.

Warning:

Y ou may run into trouble if thisfeatureis used carelessly. Always make sure that all communicating components
are either from the same Erlang/OTP release, or from release X and release Y where all components from release
Y arein compatibility mode of release X.

int ei encode version(char *buf, int *index)
int ei x _encode version(ei x buff* x)
Encodes a version magic number for the binary format. Must be the first token in abinary term.

int ei encode long(char *buf, int *index, long p)
int ei x encode long(ei x buff* x, long p)

Encodes along integer in the binary format. Note that if the code is 64 bits the function ei_encode long() is exactly
thesame asei_encode longlong().

int ei encode ulong(char *buf, int *index, unsigned long p)
int ei x encode ulong(ei x buff* x, unsigned long p)

Encodes an unsigned long integer in the binary format. Note that if the codeis 64 bits the function ei_encode_ulong()
is exactly the same asei_encode_ulonglong().

int ei encode longlong(char *buf, int *index, long long p)
int ei_x_encode longlong(ei x buff* x, long long p)

EncodesaGCC I ong | ong or Visual C++ __i nt 64 (64 bit) integer in the binary format. Note that this function
ismissing in the VxWorks port.

Ericsson AB. All Rights Reserved.: Erlang Interface | 13

ei

int ei encode ulonglong(char *buf, int *index, unsigned long long p)
int ei x_encode ulonglong(ei x buff* x, unsigned long long p)

EncodesaGCCunsi gned | ong | ong orVisual C++unsi gned __i nt 64 (64 bit) integer in the binary format.
Note that this function is missing in the VxWorks port.

int ei_encode bignum(char *buf, int *index, mpz_t obj)
int ei x encode bignum(ei x buff *x, mpz t obj)

EncodesaGMPnpz_t integer to binary format. To usethisfunction theei library needsto be configured and compiled
to use the GMP library.

int ei encode double(char *buf, int *index, double p)
int ei x _encode double(ei x buff* x, double p)

Encodes a double-precision (64 bit) floating point number in the binary format.

int ei encode boolean(char *buf, int *index, int p)
int ei x _encode boolean(ei x buff* x, int p)
Encodes aboolean value, astheatomt r ue if pisnot zero or f al se if piszero.

int ei encode char(char *buf, int *index, char p)
int ei x _encode char(ei x buff* x, char p)
Encodes a char (8-bit) as an integer between 0-255 in the binary format. Note that for historical reasons the integer

argument is of type char . Your C code should consider the given argument to be of type unsi gned char even
if the C compilers and system may define char to be signed.

int ei encode string(char *buf, int *index, const char *p)

int ei encode string len(char *buf, int *index, const char *p, int len)
int ei x _encode string(ei x buff* x, const char *p)

int ei x _encode string len(ei x_buff* x, const char* s, int len)

Encodes a string in the binary format. (A string in erlang is alist, but is encoded as a character array in the binary
format.) The string should be zero-terminated, except for theei _x_encode_stri ng_| en() function.

int ei encode atom(char *buf, int *index, const char *p)

int ei encode atom len(char *buf, int *index, const char *p, int len)

int ei x _encode atom(ei x buff* x, const char *p)

int ei x _encode atom len(ei x buff* x, const char *p, int len)

Encodes an atom in the binary format. The p parameter is the name of the atom in latinl encoding.

Only upto MAXATOMLEN-1 bytes are encoded. The name should be zero-terminated, except for the
ei _x_encode_atom | en() function.

14 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei

int ei encode atom as(char *buf, int *index, const char *p,
erlang char encoding from enc, erlang char encoding to _enc)

int ei encode atom len as(char *buf, int *index, const char *p, int len,
erlang char encoding from enc, erlang char encoding to _enc)

int ei x _encode atom as(ei x buff* x, const char *p, erlang char encoding
from _enc, erlang char encoding to enc)

int ei x encode atom len as(ei x buff* x, const char *p, int len,
erlang char encoding from enc, erlang char encoding to enc)

Encodes an atom in the binary format with character encoding t o_enc (latinl or utf8). The p parameter is the
name of the atom with character encoding f rom enc (ascii, latinl or utf8). The name must either be zero-
terminated or afunction variant with al en parameter must be used. If t 0_enc is set to the bitwise-or'd combination
(ERLANG_LATI N1| ERLANG_UTF8) , utf8 encoding is only used if the atom string can not be represented in latinl
encoding.

The encoding will fail if p is not avalid string in encoding f r om_enc, if the string is too long or if it can not be
represented with character encodingt o_enc.

These functions were introduced in R16 release of Erlang/OTP as part of afirst step to support UTF8 atoms. Atoms
encoded with ERLANG_UTF8 can not be decoded by earlier rel eases than R16.

int ei encode binary(char *buf, int *index, const void *p, long len)
int ei x _encode binary(ei x buff* x, const void *p, long len)

Encodes abinary in the binary format. The datais at p, of | en bytes length.

int ei encode pid(char *buf, int *index, const erlang pid *p)
int ei x _encode pid(ei x buff* x, const erlang pid *p)

Encodes an erlang process identifier, pid, in the binary format. The p parameter pointsto an er | ang_pi d structure
(which should have been obtained earlier with ei _decode_pi d()).

int ei encode fun(char *buf, int *index, const erlang fun *p)
int ei x encode fun(ei x buff* x, const erlang fun* fun)

Encodes afunin the binary format. The p parameter pointsto aner | ang_f un structure. Theer | ang_f un isnot
freed automatically, thef r ee_f un should be called if the fun is not needed after encoding.

int ei encode port(char *buf, int *index, const erlang port *p)
int ei x _encode port(ei x buff* x, const erlang port *p)

Encodes an erlang port in the binary format. The p parameter pointsto aer | ang_port structure (which should
have been obtained earlier with ei _decode_port ().

int ei encode ref(char *buf, int *index, const erlang ref *p)
int ei x _encode ref(ei x buff* x, const erlang ref *p)

Encodes an erlang reference in the binary format. The p parameter pointstoaer | ang_r ef structure (which should
have been obtained earlier withei _decode _ref ().

Ericsson AB. All Rights Reserved.: Erlang Interface | 15

ei

int ei encode term(char *buf, int *index, void *t)
int ei x _encode term(ei x buff* x, void *t)

Thisfunction encodesan ETERM asobtainedfromer | _i nt er f ace. Thet parameter isactually an ETERMpointer.
This function doesn't free the ETERM

int ei_encode trace(char *buf, int *index, const erlang trace *p)
int ei x _encode trace(ei x buff* x, const erlang trace *p)

This function encodes an erlang trace token in the binary format. The p parameter pointsto aerl ang_trace
structure (which should have been obtained earlier withei _decode_trace().

int ei encode tuple header(char *buf, int *index, int arity)
int ei x _encode tuple header(ei x buff* x, int arity)

This function encodes a tuple header, with a specified arity. The next ar i t y terms encoded will be the elements of
the tuple. Tuples and lists are encoded recursively, so that a tuple may contain another tuple or list.

E.g. toencodethetuple{a, {b, {}}}:

ei encode tuple header(buf, &i, 2);
ei encode atom(buf, &i, "a");
ei encode tuple header(buf, &i, 2);
ei encode atom(buf, &i, "b");
ei encode tuple header(buf, &i, 0);

int ei encode list header(char *buf, int *index, int arity)
int ei x _encode list header(ei x buff* x, int arity)

This function encodes a list header, with a specified arity. The next ari t y+1 terms are the elements (actualy its
ar ity conscells) and the tail of thelist. Lists and tuples are encoded recursively, so that alist may contain another
list or tuple.

E.g.toencodethelist[c, d, [e | f]]:

ei encode list header(buf, &i, 3);
ei encode atom(buf, &i, "c");

ei encode atom(buf, &i, "d");

ei encode list header(buf, &i, 1);
ei encode atom(buf, &i, "e");

ei encode atom(buf, &i, "f");

ei encode empty list(buf, &i);

Note:

It may seem that there is no way to create alist without knowing the number of elementsin advance. But indeed
thereisaway. Note that thelist[a, b, c] canbewrittenas[a | [b | [c]]].Usng this, alist can
be written as conses.

16 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei

To encode alist, without knowing the arity in advance:

while (something()) {
ei x encode list header(&x, 1);
ei x encode ulong(&x, i); /* just an example */

}

ei x encode empty list(&x);

int ei encode empty list(char* buf, int* index)
int ei x _encode empty list(ei x_ buff* x)
This function encodes an empty list. It's often used at the tail of alist.

int ei get type(const char *buf, const int *index, int *type, int *size)

Thisfunction returnsthetypeint ype and sizeinsi ze of the encoded term. For strings and atoms, size isthe number
of characters not including the terminating 0. For binaries, si ze isthe number of bytes. For listsand tuples, si ze is
the arity of the object. For other types, si ze isO. Inall cases, i ndex isleft unchanged.

int ei decode version(const char *buf, int *index, int *version)

This function decodes the version magic number for the erlang binary term format. It must be the first token in a
binary term.

int ei decode long(const char *buf, int *index, long *p)

This function decodes a long integer from the binary format. Note that if the code is 64 bits the function
ei_decode long() is exactly the same asei_decode |longlong().

int ei decode ulong(const char *buf, int *index, unsigned long *p)

This function decodes an unsigned long integer from the binary format. Note that if the code is 64 bits the function
ei_decode ulong() is exactly the same as ei_decode_ulonglong().

int ei decode longlong(const char *buf, int *index, long long *p)

This function decodesa GCC | ong | ong or Visual C++ __i nt 64 (64 bit) integer from the binary format. Note
that this function is missing in the VxWorks port.

int ei decode ulonglong(const char *buf, int *index, unsigned long long *p)

Thisfunction decodesaGCC unsi gned | ong | ong or Visual C++ unsi gned __i nt 64 (64 bit) integer from
the binary format. Note that this function is missing in the VxWorks port.

int ei decode bignum(const char *buf, int *index, mpz t obj)
This function decodes an integer in the binary format to a GMP npz_t integer. To use this function the ei library

needs to be configured and compiled to use the GMP library.

int ei decode double(const char *buf, int *index, double *p)
This function decodes an double-precision (64 bit) floating point number from the binary format.

Ericsson AB. All Rights Reserved.: Erlang Interface | 17

ei

int ei decode boolean(const char *buf, int *index, int *p)

This function decodes a boolean value from the binary format. A boolean is actually an atom, t r ue decodes 1 and
f al se decodesO.

int ei decode char(const char *buf, int *index, char *p)

Thisfunction decodes a char (8-bit) integer between 0-255 from the binary format. Note that for historical reasonsthe
returned integer is of type char . Your C code should consider the returned value to be of type unsi gned char
even if the C compilers and system may define char to be signed.

int ei_decode string(const char *buf, int *index, char *p)

This function decodes a string from the binary format. A string in erlang is alist of integers between 0 and 255. Note
that since the string is just a list, sometimes lists are encoded as stringsby t erm t o_bi nary/ 1, even if it was
not intended.

The string is copied to p, and enough space must be allocated. The returned string is null terminated so you need to
add an extra byte to the memory requirement.

int ei_decode atom(const char *buf, int *index, char *p)

This function decodes an atom from the binary format. The null terminated name of the atom is placed at p. There
can be at most MAXATOVLEN bytes placed in the buffer.

int ei decode atom as(const char *buf, int *index, char *p, int plen,
erlang char encoding want, erlang char encoding* was, erlang char encoding*
result)

This function decodes an atom from the binary format. The null terminated name of the atom is placed in buffer at
p of length pl en bytes.

The wanted string encoding is specified by want . The original encoding used in the binary format (latinl or utf8)
can be obtained from *was. The actual encoding of the resulting string (7-bit ascii, latinl or utf8) can be obtained
from*resul t . Bothwas andresul t canbe NULL. *r esul t may differ from want if want isabitwise-or'd
combination like ERLANG_LATI N1| ERLANG UTF8 orif *r esul t turnout to be pure 7-bit ascii (compatible with
both latin1 and utf8).

This function fails if the atom istoo long for the buffer or if it can not be represented with encoding want .
This function was introduced in R16 release of Erlang/OTP as part of afirst step to support UTF8 atoms.

int ei decode binary(const char *buf, int *index, void *p, long *len)

This function decodes a binary from the binary format. Thel en parameter is set to the actual size of the binary. Note
that ei _decode_bi nary() assumes that there are enough room for the binary. The size required can be fetched

by ei _get _type().

int ei decode fun(const char *buf, int *index, erlang fun *p)
void free fun(erlang fun* f)

This function decodes afun from the binary format. The p parameter should be NULL or pointtoaner| ang_f un
structure. This is the only decode function that allocates memory; when the er | ang_f un is no longer needed, it
should be freed with f r ee_f un. (This has to do with the arbitrary size of the environment for afun.)

18 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei

int ei decode pid(const char *buf, int *index, erlang pid *p)

Decodes a pid, process identifier, from the binary format.

int ei decode port(const char *buf, int *index, erlang port *p)
This function decodes a port identifier from the binary format.

int ei_decode ref(const char *buf, int *index, erlang_ref *p)
This function decodes a reference from the binary format.

int ei decode trace(const char *buf, int *index, erlang_trace *p)

Decodes an erlang trace token from the binary format.

int ei decode tuple header(const char *buf, int *index, int *arity)

This function decodes a tuple header, the number of elementsis returned in ari t y. The tuple elements follows in
order in the buffer.

int ei decode list header(const char *buf, int *index, int *arity)

Thisfunction decodes alist header from the binary format. The number of elementsisreturnedinarity. Thearity
+1 elements follows (the last oneisthetail of the list, normally an empty list.) If ari ty is0, it'san empty list.

Note that lists are encoded as strings, if they consist entirely of integers in the range 0..255. This function will not
decode such strings, useei _decode_stri ng() instead.

int ei decode ei term(const char* buf, int* index, ei term* term)

This function decodes any term, or at least triesto. If the term pointed at by *i ndex in buf fitsinthet er munion,
it is decoded, and the appropriatefieldint er m >val ue isset, and *i ndex isincremented by the term size.

Thefunction returns 1 on successful decoding, -1 on error, and O if theterm seems aright, but doesnot fitinthet er m
structure. If it returns 1, thei ndex will be incremented, and thet er mcontains the decoded term.

Thet er mstructure will contain the arity for atuple or list, size for a binary, string or atom. It will contains aterm
if it'sany of the following: integer, float, atom, pid, port or ref.

int ei decode term(const char *buf, int *index, void *t)

Thisfunction decodesaterm fromthebinary format. Thetermisreturnint asaETERM, sot isactually an ETERIVF *
(seeer| _interface(3) . Theterm should later be deall ocated.

Note that this function islocated in the erl_interface library.

int ei print term(FILE* fp, const char* buf, int* index)
int ei s print term(char** s, const char* buf, int* index)

This function prints a term, in clear text, to the file given by f p, or the buffer pointed to by s. It tries to resemble
the term printing in the erlang shell.

Inei _s_print_term),theparameter s should point to adynamically (malloc) allocated string of BUFSI Z bytes
or aNULL pointer. The string may be reallocated (and * s may be updated) by this function if the result is more than
BUFSI Z characters. The string returned is zero-terminated.

Ericsson AB. All Rights Reserved.: Erlang Interface | 19

ei

Thereturn value is the number of characters written to thefile or string, or -1 if buf [i ndex] doesn't contain avalid
term. Unfortunately, I/O errorson f p is not checked.

The argument i ndex is updated, i.e. this function can be viewed as en decode function that decodes a term into a
human readable format.

int ei x format(ei x buff* x, const char* fmt, ...)
int ei x format wo ver(ei x buff* x, const char *fmt, ...)
Format aterm, given as a string, to a buffer. This functions works like a sprintf for erlang terms. The f nt contains

aformat string, with arguments like ~d, to insert terms from variables. The following formats are supported (with
the C types given):

~a - an atom, char*

~C - a character, char

~s - a string, char*

~i - an integer, int

~L - a long integer, long int

~u - a unsigned long integer, unsigned long int
~f - a float, float

~d - a double float, double float

~p - an Erlang PID, erlang pid*

For instance, to encode a tuple with some stuff:

ei x format("{~a,~i,~d}", "numbers", 12, 3.14159)
encodes the tuple {numbers,12,3.14159}

Theei _x_format _wo_ver () formatsinto abuffer, without theinitial version byte.

int ei x new(ei x buff* x)
int ei x new with version(ei x buff* x)

This function allocatesanew ei _x_buf f buffer. The fields of the structure pointed to by x parameter isfilled in,
and a default buffer isallocated. Theei _x_new wi t h_ver si on() also putsaninitia version byte, that is used
in the binary format. (Sothat ei _x_encode_ver si on() won't be needed.)

int ei x free(ei x buff* x)
Thisfunction freesan ei _x_buf f buffer. The memory used by the buffer is returned to the OS.

int ei x _append(ei x buff* x, const ei x buff* x2)
int ei x _append buf(ei x buff* x, const char* buf, int len)
These functions appends data at the end of the buffer x.

int ei skip term(const char* buf, int* index)

This function skips a term in the given buffer, it recursively skips elements of lists and tuples, so that afull term is
skipped. Thisisaway to get the size of an erlang term.

20 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei

buf isthe buffer.
i ndex isupdated to point right after the term in the buffer.

Note:

This can be useful when you want to hold arbitrary terms: just skip them and copy the binary term data to some
buffer.

The function returns 0 on success and - 1 on failure.

Debug Information
Some tips on what to check when the emulator doesn't seem to receive the terms that you send.

e becareful with the version header, useei _x_new wi t h_ver si on() when appropriate
e turnon distribution tracing on the erlang node
e check theresult codes from ei_decode -calls

See Also
erl_interface(3)

Ericsson AB. All Rights Reserved.: Erlang Interface | 21

ei_connect

ei_connect
C Library

This module enables C programs to communicate with erlang nodes, using the erlang distribution over TCP/IP.

A C node appears to Erlang as a hidden node. That is, Erlang processes that know the name of the C node are able
to communicate with it in a normal manner, but the node name will not appear in the listing provided by the Erlang
function nodes/ 0.

The environment variable ERL_EPMD_PORT can be used to indicate which logical cluster a C node belongs to.

Timeout functions

Most functions appear in a version with the suffix _t nb appended to the function name. Those function take an
additional argument, a timeout in milliseconds. The semantics is this; for each communication primitive involved
in the operation, if the primitive does not complete within the time specified, the function will return an error and
erl _errno will be set to ETI MEDOUT. With communication primitive is meant an operation on the socket, like
connect,accept,recv orsend.

Obviously the timeouts are for implementing fault tolerance, not to keep hard realtime promises. The _t no functions
are for detecting non-responsive peers and to avoid blocking on socket operations.

A timeout value of 0 (zero), meansthat timeouts are disabled. Calling a_t no-function with the last argument as0 is
therefore exactly the same thing as calling the function without the _t no suffix.

Aswith all other e functions, you are not expected to put the socket in non blocking mode yourself in the program.
Every use of non blocking modeis embedded inside the timeout functions. The socket will always be back in blocking
mode after the operations are completed (regardless of the result). To avoid problems, leave the socket options aone.
Ei will handle any socket options that need modification.

In al other senses, the _t no functions inherit al the return values and the semantics from the functions without the
_t no suffix.

Exports

int ei connect init(ei cnode* ec, const char* this node name, const char
*cookie, short creation)

int ei connect xinit(ei cnode* ec, const char *thishostname, const char
*thisalivename, const char *thisnodename, Erl IpAddr thisipaddr, const char
*cookie, short creation)

These function initializes the ec structure, to identify the node name and cookie of the server. One of them has to
be called before other functions that works on the type ei _cnode or afile descriptor associated with a connection
to another node are used.

ec isastructure containing information about the C-node. Itisused in other ei functionsfor connecting and receiving
data.

t hi s_node_nane istheregistered name of the process (the name before'@").
cooki e isthe cookie for the node.

creat i on identifies a specific instance of a C node. It can help prevent the node from receiving messages sent to
an earlier process with the same registered name.

t hi shost nane isthe name of the machinewe're running on. If long namesareto be used, it should befully qualified
(i.e.durin. erix.ericsson. seinstead of duri n).

22 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei_connect

t hi sal i venan® isthe registered name of the process.

t hi snodenane isthe full name of the node, i.e. ei node@lur i n.

t hi spaddr if the IP address of the host.

A C node acting as a server will be assigned a creation number wheniit callsei _publ i sh() .

A connection is closed by simply closing the socket. Refer to system documentation to close the socket gracefully
(when there are outgoing packets before close).

This function return a negative value indicating that an error occurred.

Example 1:

int n = 0;

struct in addr addr;

ei cnode ec;

addr.s addr = inet addr("150.236.14.75");
if (ei connect xinit(&ec,

"chivas",
"madonna",
"madonna@chivas.du.etx.ericsson.se",
&addr;
"cookie...",
n++) < 0) {
fprintf(stderr, "ERROR when initializing: %d",erl errno);
exit(-1);
}
Example 2:
if (ei_connect init(&ec, "madonna", "cookie...", n++) < 0) {
fprintf(stderr,"ERROR when initializing: %d",erl errno);
exit(-1);
}

int ei_connect(ei_cnode* ec, char *nodename)
int ei xconnect(ei cnode* ec, Erl IpAddr adr, char *alivename)
These functions set up a connection to an Erlang node.

ei _xconnect () reguiresthe IP address of the remote host and the alive name of the remote node to be specified.
ei _connect () provides an aternative interface, and determines the information from the node name provided.

addr isthe 32-bit |P address of the remote host.
al i ve isthe alivename of the remote node.
node isthe name of the remote node.

These functions return an open file descriptor on success, or a negative value indicating that an error occurred --- in
which casethey will seter | _er r no to one of:

EHOSTUNREACH

The remote host node is unreachable
ENOVEM

No more memory available.

Ericsson AB. All Rights Reserved.: Erlang Interface | 23

ei_connect

El O
1/O error.

Additionally, er r no valuesfrom socket (2) and connect (2) system calls may be propagated into er | _er r no.
Example:

#define NODE "madonna@chivas.du.etx.ericsson.se"
#define ALIVE "madonna"
#define IP_ADDR "150.236.14.75"

/*¥** Variant 1 ***/
int fd = ei connect(&ec, NODE);

/*** Variant 2 ***/

struct in_addr addr;

addr.s addr = inet addr(IP_ADDR);

fd = ei xconnect(&ec, &addr, ALIVE);

int ei connect tmo(ei cnode* ec, char *nodename, unsigned timeout ms)

int ei xconnect tmo(ei cnode* ec, Erl IpAddr adr, char *alivename, unsigned
timeout ms)

e _connect and ei_xconnect with an optional timeout argument, see the description at the beginning of this document.

int ei receive(int fd, unsigned char* bufp, int bufsize)

This function receives a message consisting of a sequence of bytesin the Erlang external format.

f d isan open descriptor to an Erlang connection. It is obtained from apreviousei _connect orei _accept.
buf p isabuffer large enough to hold the expected message.

buf si ze indicatesthe size of buf p.

If atick occurs, i.e., the Erlang node on the other end of the connection has polled this node to see if it is till dlive,
the function will return ERL_TI CK and no message will be placed in the buffer. Also, er| _er r no will be set to
EAGAI N.

On success, the message is placed in the specified buffer and the function returns the number of bytes actually read.
On failure, the function returns ERL_ ERROR and will seter | _er r no to one of:

EAGAI N

Temporary error: Try again.
EMSGSI ZE

Buffer too small.
El O

1/O error.

int ei receive tmo(int fd, unsigned char* bufp, int bufsize, unsigned

timeout ms)
ei_receive with an optional timeout argument, see the description at the beginning of this document.

24 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei_connect

int ei receive msg(int fd, erlang msg* msg, ei x buff* x)
int ei xreceive msg(int fd, erlang msg* msg, ei x buff* x)

These functions receives a message to the buffer in x. ei _xrecei ve_nsg alows the buffer in x to grow, but
ei _recei ve_nsg falsif the message is bigger than the preallocated buffer in x.

f d isan open descriptor to an Erlang connection.

neg isapointer to an er | ang_nsg structure and contains information on the message received.

X isbuffer obtained fromei _x_new.

On success, thefunction returns ERL _ MSGand the ns g struct will beinitialized. er | ang_nsg isdefined asfollows:

typedef struct {
long msgtype;
erlang pid from;
erlang pid to;
char toname[MAXATOMLEN+1];
char cookie[MAXATOMLEN+1];
erlang trace token;

} erlang msg;

nmegt ype identifies the type of message, and isone of ERL_SEND, ERL_REG _SEND, ERL_LI NK, ERL__UNLI NK
andERL_EXIT.

If megt ype isERL_SENDthisindicates that an ordinary send operation has taken place, and msg- >t o containsthe
Pid of the recipient (the C-node). If t ype isERL_REG_SEND then aregistered send operation took place, and nsg-
>f r omcontains the Pid of the sender.

If negt ype isERL_LI NKor ERL_UNLI NK, then nsg- >t 0 and nsg- >f r omcontain the pids of the sender and
recipient of the link or unlink.

If megt ype isERL_EXI T, then thisindicates that alink has been broken. In thiscase, nsg- >t 0 and nsg- >f r om
contain the pids of the linked processes.

Thereturn valueisthe sameasforei _r ecei ve, see above.

int ei receive msg tmo(int fd, erlang msg* msg, ei x buff* x, unsigned
imeout ms)

int ei xreceive msg tmo(int fd, erlang msg* msg, ei x buff* x, unsigned
timeout ms)

ei_receive_msg and ei_xreceive_msg with an optional timeout argument, see the description at the beginning of this
document.

int ei receive encoded(int fd, char **mbufp, int *bufsz, erlang msg *msg, int
*msglen)

This function is retained for compatibility with code generated by the interface compiler and with code following
examples in the same application.

In essence the function performs the same operation asei _xr ecei ve_nsg, but instead of using an ei_x_buff, the
function expects a pointer to a character pointer (mbuf p), where the character pointer should point to a memory area
alocated by mal | oc. The argument buf sz should be a pointer to an integer containing the exact size (in bytes) of
the memory area. The function may reallocate the memory area and will in such cases put the new sizein * buf sz
and update * nbuf p.

Ericsson AB. All Rights Reserved.: Erlang Interface | 25

ei_connect

Furthermore the function returns either ERL_TICK or the nsgt ype field of theer| ang_nsg *msg. The actual
length of the messageisput in * msgl en. On error it will return avalue< 0.

Itisrecommendedto useei_xreceive_msg instead when possible, for the sake of readability. Thefunction will however
be retained in the interface for compatibility and will not be removed not be removed in future rel eases without notice.

int ei receive encoded tmo(int fd, char **mbufp, int *bufsz, erlang msg *msg,
int *msglen, unsigned timeout ms)

e_receive_encoded with an optional timeout argument, see the description at the beginning of this document.

int ei send(int fd, erlang pid* to, char* buf, int len)

This function sends an Erlang term to a process.

f d isan open descriptor to an Erlang connection.

t 0 isthe Pid of the intended recipient of the message.

buf isthe buffer containing the term in binary format.

| en isthe length of the message in bytes.

The function returns 0 if successful, otherwise -1, in the latter caseit will seter| _errnotoEl O

int ei send tmo(int fd, erlang pid* to, char* buf, int len, unsigned
timeout ms)

ei_send with an optional timeout argument, see the description at the beginning of this document.

int ei send encoded(int fd, erlang pid* to, char* buf, int len)

Worksexactly asei_send, the alternative name retained for backward compatibility. The function will not be removed
without notice.

int ei send encoded tmo(int fd, erlang pid* to, char* buf, int len, unsigned
timeout ms)

ei_send_encoded with an optional timeout argument, see the description at the beginning of this document.

int ei reg send(ei cnode* ec, int fd, char* server name, char* buf, int len)
This function sends an Erlang term to a registered process.

This function sends an Erlang term to a process.

f d is an open descriptor to an Erlang connection.

server _nane isthe registered name of the intended recipient.

buf isthe buffer containing the term in binary format.

| en isthe length of the message in bytes.

The function returns O if successful, otherwise -1, in the latter caseit will seter| _errnotoEl O

Example, send the atom "ok" to the process "worker":

ei x buff x;
ei x new with version(&x);
ei x encode atom(&x, "ok");

26 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei_connect

if (ei reg send(&ec, fd, x.buff, x.index) < 0)
handle _error();

int ei reg send tmo(ei cnode* ec, int fd, char* server name, char* buf, int
len, unsigned timeout ms)

ei_reg_send with an optional timeout argument, see the description at the beginning of this document.

int ei_send reg encoded(int fd, const erlang pid *from, const char *to, const
char *buf, int len)

This function is retained for compatibility with code generated by the interface compiler and with code following
examples in the same application.

The function works as ei _r eg_send with one exception. Instead of taking the ei _cnode as a first argument, it
takesasecond argument, aner | ang_pi d which should be the processidentifier of the sending process (inthe erlang
distribution protocal).

A suitableer | ang_pi d can be constructed from theei _cnode structure by the following example code:

ei cnode ec;
erlang pid *self;
int fd; /* the connection fd */

self = ei self(&ec);
self->num = fd;

int ei_send reg encoded tmo(int fd, const erlang pid *from, const char *to,
const char *buf, int len)

ei_send_reg_encoded with an optional timeout argument, see the description at the beginning of this document.

int ei rpc(ei cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
int argbuflen, ei x buff *x)

int ei_rpc_to(ei_cnode *ec, int fd, char *mod, char *fun, const char *argbuf,
int argbuflen)

int ei rpc from(ei cnode *ec, int fd, int timeout, erlang msg *msg, ei x buff
*X)

These functions support calling Erlang functions on remote nodes. ei _r pc_t o() sends an rpc request to aremote
nodeand ei _rpc_fron() receivesthe results of suchacal. ei _rpc() combines the functionality of these two
functions by sending an rpc request and waiting for the results. Seeasor pc: cal | / 4.

ec isthe C-node structure previoudly initiated by acall toei _connect _init () orei _connect _xinit()
f d isan open descriptor to an Erlang connection.

ti meout isthe maximum time (in ms) to wait for results. Specify ERL_NO_TI MEQUT to wait forever. ei _r pc()
will wait infinitely for the answer, i.e. the call will never time out.

nod isthe name of the module containing the function to be run on the remote node.

f un isthe name of the function to run.

Ericsson AB. All Rights Reserved.: Erlang Interface | 27

ei_connect

ar gbuf isapointer to abuffer with an encoded Erlang list, without aversion magic number, containing the arguments
to be passed to the function.

ar gbuf | en isthe length of the buffer containing the encoded Erlang list.

nms g structure of typeer | ang_nsg and contains information on the message received. Seeei _r ecei ve_nsg()
for adescription of theer | ang_nsg format.

X points to the dynamic buffer that receives the result. For for ei _r pc() thiswill be the result without the version
magic number. For ei _rpc_fron{() theresult will return aversion magic number and a2-tuple{ r ex, Repl y}.

ei _rpc() returnsthe number of bytesin the result on successand -1 on failure. ei _rpc_fronm() returns number
of bytes or one of ERL_TI CK, ERL_TI MEQUT and ERL_ ERROR otherwise. When failing, al three functions set
erl _errno tooneof:

El O
1/O error.
ETI MEDOUT
Timeout expired.
EAGAI N
Temporary error: Try again.

Example, check to seeif an erlang processis alive:

int index = 0, is alive;
ei x buff args, result;

ei x new(&result);

ei x new(&args);

ei x encode list header(&args, 1);
ei x encode pid(&args, &check pid);
ei x encode empty list(&args);

if (ei rpc(&ec, fd, "erlang", "is process alive",
args.buff, args.index, &result) < 0)
handle error();

if (ei decode version(result.buff, &index) < 0
|| ei decode bool(result.buff, &index, &is alive) < 0)
handle error();

int ei publish(ei cnode *ec, int port)

These functions are used by a server process to register with the local name server epmd, thereby allowing other
processes to send messages by using the registered name. Before calling either of these functions, the process should
havecaled bi nd() and! i st en() onan open socket.

ec isthe C-node structure.
port istheloca nameto register, and should be the same as the port number that was previously bound to the socket.
addr isthe 32-bit IP address of the local host.

To unregister with epmd, simply close the returned descriptor. Do not use ei _unpubl i sh() , which is deprecated
anyway.

On success, the functions return a descriptor connecting the calling process to epmd. On failure, they return -1 and
seterl _errnotoEl O

Additionally, er r no valuesfrom socket (2) and connect (2) system calls may be propagated intoer | _err no.

28 | Ericsson AB. All Rights Reserved.: Erlang Interface

ei_connect

int ei publish tmo(ei cnode *ec, int port, unsigned timeout ms)

ei_publish with an optional timeout argument, see the description at the beginning of this document.

int ei accept(ei cnode *ec, int listensock, ErlConnect *conp)
This function is used by a server process to accept a connection from a client process.

ec isthe C-node structure.

| i st ensock isan open socket descriptor on which | i st en() has previously been called.

conp isapointer to an Er | Connect struct, described as follows:

typedef struct {

char ipadr[4];

char nodename [MAXNODELEN];
} ErlConnect;

On success, conp isfilled in with the address and node name of the connecting client and afile descriptor is returned.
Onfailure, ERL_ERRORIisreturnedander | _errno issetto El O

int ei accept tmo(ei cnode *ec, int listensock, ErlConnect *conp, unsigned
timeout ms)

e _accept with an optional timeout argument, see the description at the beginning of this document.

int ei unpublish(ei cnode *ec)

This function can be called by a process to unregister a specified node from epmd on the localhost. This is however
usualy not allowed, unless epmd was started with the -relaxed_command_check flag, which it normally isn't.

To unregister a node you have published, you should close the descriptor that was returned by ei _publ i sh() .

Warning:

This function is deprecated and will be removed in a future release.

ec isthe node structure of the node to unregister.

If the node was successfully unregistered from epmd, the function returns 0. Otherwise, it returns -1 and sets
erl _errnoistoEl O

int ei unpublish tmo(ei cnode *ec, unsigned timeout ms)
ei_unpublish with an optional timeout argument, see the description at the beginning of this document.

const char *ei thisnodename(ei cnode *ec)
const char *ei thishostname(ei cnode *ec)
const char *ei thisalivename(ei cnode *ec)

These functions can be used to retrieve information about the C Node. These values are initialy set with
ei _connect _init() orei _connect_xinit().

Ericsson AB. All Rights Reserved.: Erlang Interface | 29

ei_connect

They simply fetches the appropriate field from the ec structure. Read the field directly will probably be safe for a
long time, so these functions are not really needed.

erlang pid *ei self(ei cnode *ec)

This function retrieves the Pid of the C-node. Every C-node has a (pseudo) pid used in ei _send_reg, ei _rpc
and others. Thisis contained in afield in the ec structure. It will be safe for along time to fetch this field directly
fromtheei _cnode structure.

struct hostent *ei gethostbyname(const char *name)
struct hostent *ei gethostbyaddr(const char *addr, int len, int type)

struct hostent *ei gethostbyname r(const char *name, struct hostent *hostp,
char *buffer, int buflen, int *h_errnop)

struct hostent *ei gethostbyaddr r(const char *addr, int length, int type,
struct hostent *hostp, char *buffer, int buflen, int *h_errnop)

These are convenience functions for some common name lookup functions.

int ei get tracelevel(void)
void ei set tracelevel(int level)

These functions are used to set tracing on the distribution. The levels are different verbosity levels. A higher level
means more information. See also Debug Information and EI _ TRACELEVEL below.

ei _set _tracel evel andei _get tracel evel arenotthread safe.

Debug Information
If aconnection attempt fails, the following can be checked:

e erl_errno

» that theright cookie was used

e that epmdisrunning

» theremote Erlang node on the other side is running the same version of Erlang asthe ei library.
* theenvironment variable ERL_EPNMD_PORT is set correctly.

The connection attempt can be traced by setting atracelevel by either usingei _set _tracel evel or by settingthe
environment variable El _ TRACELEVEL. The different tracel evels has the following messages:

e 1. Verbose error messages

e 2. Above messages and verbose warning messages

» 3. Above messages and progress reports for connection handling

e 4: Above messages and progress reports for communication

* 5 Above messages and progress reports for data conversion

30 | Ericsson AB. All Rights Reserved.: Erlang Interface

registry

registry
CLibrary

Thismodule provides support for storing key-value pairsin atable known asaregistry, backing up registriesto Mnesia
in an atomic manner, and later restoring the contents of aregistry from Mnesia.

Exports

el reg *ei reg open(size)
Types:

int size;
Open (create) aregistry. The registry will beinitially empty. Useei _reg_cl ose() to closetheregistry later.
si ze is the approximate number of objects you intend to store in the registry. Since the registry uses a hash table
with collision chaining, there is no absolute upper limit on the number of objects that can be stored in it. However
for reasons of efficiency, it is a good idea to choose a number that is appropriate for your needs. It is possible to

useei _reg_resize() tochangethe sizelater. Note that the number you provide will be increased to the nearest
larger prime number.

On success, an empty registry will be returned. On failure, NULL will be returned.

int ei reg resize(reg,newsize)
Types:
ei _reg *reg;
i nt newsi ze;
Change the size of aregistry.
newsi ze isthe new size to make the registry. The number will be increased to the nearest larger prime number.

On success, the registry will be resized, all contents rehashed, and the function will return 0. On failure, the registry
will be left unchanged and the function will return -1.

int ei reg close(reg)
Types:
ei _reg *reg;
A registry that has previously been created withei _reg_open() isclosed, and all the objectsit contains are freed.
r eg istheregistry to close.

The function returns O.

int ei reg setival(reg,key,i)
Types:
ei _reg *reg;
const char *key;
int i;
Create a key-value pair with the specified key and integer valuei . If an object aready existed with the same key,
the new value replaces the old one. If the previous value was a binary or string, it isfreed withf r ee() .

Ericsson AB. All Rights Reserved.: Erlang Interface | 31

registry

r eg isthe registry where the object should be placed.
key isthe name of the object.

i istheinteger value to assign.

The function returns 0 on success, or -1 on failure.

int ei reg setfval(reg,key,f)
Types.

ei _reg *reg;

const char *key;

doubl e f;

Create a key-value pair with the specified key and floating point value f . If an object already existed with the same
key, the new value replaces the old one. If the previous value was abinary or string, itisfreed withfr ee() .

r eg isthe registry where the object should be placed.
key isthe name of the object.
f isthe floating point value to assign.

The function returns 0 on success, or -1 on failure.

int ei reg setsval(reg,key,s)
Types:

ei _reg *reg;

const char *key;

const char *s;

Create akey-value pair with the specified key whose "value" isthe specified string s.. If an object already existed with
thesamekey, the new valuereplacesthe old one. If the previous value was abinary or string, it isfreed withf r ee() .

r eg isthe registry where the object should be placed.
key isthe name of the object.

s isthestringto assign. The string itself must have been created through asinglecall torral | oc() or similar function,
so that the registry can later delete it if necessary by calingfree() .

The function returns 0 on success, or -1 on failure.

int ei reg setpval(reg,key,p,size)
Types:
ei _reg *reg;
const char *key;
const void *p;
int size;
Create akey-value pair with the specified key whose "value" isthe binary object pointed to by p. If an object already

existed with the same key, the new value replaces the old one. If the previous value was a binary or string, it isfreed
withfree().

r eg isthe registry where the object should be placed.
key isthe name of the object.

32 | Ericsson AB. All Rights Reserved.: Erlang Interface

registry

p is a pointer to the binary object. The object itself must have been created through a single cal to mal | oc() or
similar function, so that the registry can later delete it if necessary by callingf r ee() .

si ze isthelength in bytes of the binary object.
The function returns 0 on success, or -1 on failure.

int ei reg setval(reg,key,flags,v,...)
Types.

ei _reg *reg;

const char *key;

int flags;

v (see bel ow)

Create a key-value pair with the specified key whose value is specified by v. If an object already existed with the
same key, the new value replaces the old one. If the previous value was a binary or string, it isfreed withf r ee() .

r eg isthe registry where the object should be placed.
key isthe name of the object.

f | ags indicates the type of the object specified by v. Flags must be one of EI_INT, EI_FLT, EIl_STRand El_BIN,
indicatingwhether v isi nt ,doubl e,char * orvoi d*.Iff | ags isEl_BIN, thenafifthargumentsi ze isrequired,
indicating the size in bytes of the object pointed to by v.

If you wish to store an arbitrary pointer in the registry, specify asi ze of 0. In this case, the object itself will not be
transferred by anei _reg_dunp() operation, just the pointer value.

The function returns 0 on success, or -1 on failure.

int ei reg getival(reg,key)
Types:
ei _reg *reg;
const char *key;
Get the value associated with key in the registry. The value must be an integer.
r eg isthe registry where the object will be looked up.
key isthe name of the object to look up.

On success, the function returns the value associated with key. If the object was not found or it was not an integer
object, -1 isreturned. To avoid problems with in-band error reporting (i.e. if you cannot distinguish between -1 and a
valid result) use the more general functionei _reg_get val () instead.

double ei reg getfval(reg,key)
Types:
ei _reg *reg;
const char *key;
Get the value associated with key in the registry. The value must be a floating point type.
r eg isthe registry where the object will be looked up.

key isthe name of the object to look up.

Ericsson AB. All Rights Reserved.: Erlang Interface | 33

registry

On success, the function returns the value associated with key. If the object was not found or it was not a floating
point object, -1.0 is returned. To avoid problems with in-band error reporting (i.e. if you cannot distinguish between
-1.0 and avalid result) use the more general functionei _r eg_get val () instead.

const char *ei reg getsval(reg,key)
Types:
ei _reg *reg;
const char *key;
Get the value associated with key in theregistry. The value must be a string.
r eg isthe registry where the object will be looked up.
key isthe name of the object to look up.

On success, the function returns the value associated with key. If the object was not found or it was not a string,
NULL isreturned. To avoid problems with in-band error reporting (i.e. if you cannot distinguish between NULL and
avalid result) use the more general functionei _r eg_get val () instead.

const void *ei reg getpval(reg,key,size)
Types:
ei _reg *reg;
const char *key;
int size;
Get the value associated with key in the registry. The value must be a binary (pointer) type.
r eg isthe registry where the object will be looked up.
key isthe name of the object to look up.
si ze will beinitialized to contain the length in bytes of the object, if it isfound.

On success, the function returns the value associated with key and indicatesits lengthin si ze. If the object was not
found or it was not a binary object, NULL is returned. To avoid problems with in-band error reporting (i.e. if you
cannot distinguish between NULL and avalid result) use the more general functionei _reg_get val () instead.

int ei reg getval(reg,key,flags,v,...)
Types:
ei _reg *reg;
const char *key;
int flags;
void *v (see bel ow)
Thisisagenera function for retrieving any kind of object from the registry.
r eg isthe registry where the object will be looked up.
key isthe name of the object to look up.

f I ags indicates the type of object that you are looking for. If f | ags is0, then any kind of object will be returned.
If f1 ags isoneof EI_INT, EI_FLT, EI_STR or EI_BIN, then only values of that kind will be returned. The buffer
pointed to by v must be large enough to hold the return data, i.e. it must be a pointer toone of i nt , doubl e, char *
or voi d*, respectively. Also, if f | ags isEl_BIN, then afifth argument i nt *si ze isrequired, so that the size
of the object can be returned.

34 | Ericsson AB. All Rights Reserved.: Erlang Interface

registry

If the function succeeds, v (and si ze if the object is binary) will be initialized with the value associated with key,
and the function will return one of EI_INT, EI_FLT, EI_STR or EI_BIN, indicating the type of object. On failure the
function will return -1 and the arguments will not be updated.

int ei reg markdirty(reg,key)
Types:

ei _reg *reg;

const char *key;
Mark aregistry object asdirty. Thiswill ensurethat it isincluded in the next backup to Mnesia. Normally thisoperation
will not be necessary sinceall of the normal registry 'set’ functions do thisautomatically. However if you haveretrieved
the value of a string or binary object from the registry and modified the contents, then the change will be invisible to
the registry and the object will be assumed to be unmodified. This function allows you to make such modifications
and then let the registry know about them.
r eg isthe registry containing the object.
key isthe name of the object to mark.
The function returns 0 on success, or -1 on failure.

int ei reg delete(reg,key)
Types:

ei _reg *reg;

const char *key;

Delete an object from the registry. The object is not actually removed from the registry, it is only marked for later
removal so that on subsequent backups to Mnesia, the corresponding object can be removed from the Mnesiatable as
well. If another object islater created with the same key, the object will be reused.

The object will be removed from the registry after acal toei _reg _dunp() orei _reg _purge().
r eg istheregistry containing key.

key isthe object to remove.

If the object was found, the function returns 0 indicating success. Otherwise the function returns -1.

int ei reg stat(reg,key,obuf)
Types:
ei _reg *reg;
const char *key;
struct ei _reg stat *obuf;
Return information about an object.
r eg isthe registry containing the object.
key isthe name of the object.
obuf isapointertoanei _reg_ st at structure, defined below:

struct ei reg stat {
int attr;
int size;

}i

Ericsson AB. All Rights Reserved.: Erlang Interface | 35

registry

Inat t r theobject's attributes are stored asthelogical OR of itstype (oneof EI_INT, EI_FLT, EI_BIN and EI_STR),
whether it is marked for deletion (EI_DELET) and whether it has been modified since the last backup to Mnesia
(El_DIRTY).

Thesi ze field indicatesthe sizein bytesrequired to store EI_STR (including the terminating 0) and EI_BIN objects,
orOfor EI_ INT andEl_FLT.

The function returns 0 and initializes obuf on success, or returns-1 on failure.

int ei reg tabstat(reg,obuf)
Types:

ei _reg *reg;

struct ei _reg tabstat *obuf;

Return information about a registry. Using information returned by this function, you can see whether the size of the
registry is suitable for the amount of data it contains.

r eg isthe registry to return information about.
obuf isapointertoanei _reg_tabst at structure, defined below:

struct ei reg tabstat {
int size;
int nelem;
int npos;
int collisions;

The si ze field indicates the number of hash positions in the registry. This is the number you provided when you
created or last resized the registry, rounded up to the nearest prime.

nel emindicates the number of elements stored in the registry. It includes objects that are deleted but not purged.
npos indicates the number of unique positions that are occupied in the registry.

col |'i si ons indicates how many elements are sharing positionsin the registry.

On success, the function returns 0 and obuf isinitialized to contain table statistics. On failure, the function returns-1.

int ei reg dump(fd, reg,mntab, flags)
Types:

int fd;

ei _reg *reg;

const char *mmtab;

int flags;

Dump the contents of aregistry to a Mnesia table in an atomic manner, i.e. either all datawill be updated, or none of
it will. If any errors are encountered while backing up the data, the entire operation is aborted.

f d isan open connection to Erlang. Mnesia 3.0 or later must be running on the Erlang node.

r eg isthe registry to back up.

36 | Ericsson AB. All Rights Reserved.: Erlang Interface

registry

mmt ab isthe name of the Mnesiatable where the backed up data should be placed. If the table does not exigt, it will be
created automatically using configurable defaults. See your Mnesia documentation for information about configuring
this behaviour.

If f I ags is0, the backup will include only those objects which have been created, modified or deleted since the last
backup or restore (i.e. an incremental backup). After the backup, any objects that were marked dirty are now clean,
and any objects that had been marked for deletion are del eted.

Alternatively, setting flags to EI_FORCE will cause a full backup to be done, and EI_NOPURGE will cause the
deleted objectsto beleft in the registry afterwards. These can be bitwise ORed together if both behaviours are desired.
If EI_NOPURGE was specified, you can use ei _r eg_pur ge() to explicitly remove the deleted items from the
registry later.

The function returns 0 on success, or -1 on failure.

int ei reg restore(fd, reg,mntab)
Types.
int fd;
ei _reg *reg;
const char *mmt ab;
The contents of a Mnesiatable are read into the registry.
f d isan open connection to Erlang. Mnesia 3.0 or later must be running on the Erlang node.
r eg isthe registry where the data should be placed.
mmt ab isthe name of the Mnesiatable to read data from.

Note that only tables of a certain format can be restored, i.e. those that have been created and backed up to with
ei _reg_dunp() . If theregistry was not empty before the operation, then the contents of the table are added to the
contents of the registry. If the table contains objects with the same keys as those already in the registry, the registry
objects will be overwritten with the new values. If the registry contains objects that were not in the table, they will
be unchanged by this operation.

After the restore operation, the entire contents of the registry is marked as unmodified. Note that this includes any
objects that were modified before the restore and not overwritten by the restore.

The function returns 0 on success, or -1 on failure.

int ei reg purge(reg)
Types:
ei _reg *reg;
Remove all objects marked for deletion. When objects are deleted with ei _r eg_del et e() they are not actually
removed from theregistry, only marked for later removal. Thisis so that on asubsequent backup to Mnesia, the objects

can also be removed from the Mnesia table. If you are not backing up to Mnesia then you may wish to remove the
objects manually with this function.

r eg isaregistry containing objects marked for deletion.
The function returns 0 on success, or -1 on failure.

Ericsson AB. All Rights Reserved.: Erlang Interface | 37

erl_connect

erl_connect
C Library

This module provides support for communication between distributed Erlang nodes and C nodes, in a manner that is
transparent to Erlang processes.

A C node appears to Erlang as a hidden node. That is, Erlang processes that know the name of the C node are able
to communicate with it in a normal manner, but the node name will not appear in the listing provided by the Erlang
function nodes/ 0.

Exports

int erl connect init(number, cookie, creation)
int erl connect xinit(host, alive, node, addr, cookie, creation)
Types:
i nt nunber;
char *cooki e;
short creation;
char *host, *al i ve, *node;
struct in_addr *addr;
Thesefunctionsinitializetheer | _connect module. In particular, they are used to identify the name of the C-node

from which they are called. One of these functions must be called before any of the other functionsin the erl_connect
module are used.

erl _connect _xi nit () storesfor later use information about the node's host name host , alive name al i ve,
node name node, IP address addr , cookie cooki e, and creation number cr eati on.erl _connect _i nit()
provides an dternative interface which does not require as much information from the caller. Instead,
erl _connect _init () usesget host bynane() to obtain default values.

If youuseer| _connect _i nit () your nodewill have ashort name, i.e., it will not be fully qualified. If you need
to use fully qualified (a.k.a. long) names, useer | _connect _xi ni t () instead.

host isthe name of the host on which the node is running.

al i ve isthe alivename of the node.

node isthe name of the node. The nodename should be of the form alivename@hostname.
addr isthe 32-bit IP address of host .

cooki e is the authorization string required for access to the remote node. If NULL the user HOME directory is
searched for a cookie file . er | ang. cooki e. The path to the home directory is retrieved from the environment
variable HOVE on Unix and from the HOVEDRI VE and HOVEPAT H variables on Windows. Refer to theaut h module
for more details.

creat i on helps identify a particular instance of a C node. In particular, it can help prevent us from receiving
messages sent to an earlier process with the same registered name.

A C node acting as a server will be assigned a creation number whenit callser | _publ i sh().

nunber isusedbyer| connect _i nit () toconstruct theactua node name. Inthe second exampl e shown below,
"cl7@a.DNS.nhame" will be the resulting node name.

Example 1:

38 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_connect

struct in_addr addr;
addr = inet addr("150.236.14.75");
if ('erl _connect xinit("chivas",

"madonna",
"madonna@chivas.du.etx.ericsson.se",
&addr;

"samplecookiestring..."),

0)

erl err _quit("<ERROR> when initializing !");

Example 2:

if ('erl connect init(17, "samplecookiestring...", 0))
erl err _quit("<ERROR> when initializing !");

int erl connect(node)
int erl xconnect(addr, alive)
Types:

char *node, *alive

struct in_addr *addr;

These functions set up a connection to an Erlang node.

erl _xconnect () requiresthe |P address of the remote host and the alive name of the remote node to be specified.
erl _connect () providesan dternative interface, and determines the information from the node name provided.

addr isthe 32-bit P address of the remote host.
al i ve isthe divename of the remote node.
node isthe name of the remote node.

These functions return an open file descriptor on success, or a negative value indicating that an error occurred --- in
which casethey will seter | _er r no to one of:

EHOSTUNREACH

The remote host node isunreachable
ENOVEM

No more memory available.
El O

1/O error.

Additionally, er r no valuesfrom socket (2) and connect (2) system calls may be propagatedintoer | _err no.

#define NODE "madonna@chivas.du.etx.ericsson.se"
#define ALIVE "madonna"
#define IP_ADDR "150.236.14.75"

/¥¥* Variant 1 **xx/
erl _connect(NODE);

/*** Variant 2 ***/

struct in_addr addr;
addr = inet addr(IP_ADDR);

Ericsson AB. All Rights Reserved.: Erlang Interface | 39

erl_connect

erl xconnect(&addr , ALIVE);

int erl close connection(fd)
Types:
int fd;
This function closes an open connection to an Erlang node.
Fd isafile descriptor obtained fromer | _connect () orerl _xconnect ().

On success, 0 isreturned. If the call fails, a non-zero value is returned, and the reason for the error can be obtained
with the appropriate platform-dependent call.

int erl receive(fd, bufp, bufsize)

Types:
int fd;
char *buf p;

i nt bufsize;
This function receives a message consisting of a sequence of bytesin the Erlang external format.
f d isan open descriptor to an Erlang connection.
buf p isabuffer large enough to hold the expected message.
buf si ze indicates the size of buf p.

If atick occurs, i.e., the Erlang node on the other end of the connection has polled this node to seeif it is still alive,
the function will return ERL_TI CK and no message will be placed in the buffer. Also, er| _err no will be set to
EAGAI N.

On success, the message is placed in the specified buffer and the function returns the number of bytes actually read.
On failure, the function returns a negative value and will set er | _er r no to one of:

EAGAI N

Temporary error: Try again.
EMSGSI ZE

Buffer too small.
El O

1/O error.

int erl receive msg(fd, bufp, bufsize, emsg)
Types:

int fd;

unsi gned char *buf p;

i nt bufsize;

Er| Message *ensg;

This function receives the message into the specified buffer, and decodesintothe (Er | Message *) ensg.
f d isan open descriptor to an Erlang connection.

buf p isabuffer large enough to hold the expected message.

buf si ze indicatesthe size of buf p.

40 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_connect

ensg isapointer to an Er | Message structure, into which the message will be decoded. Er | Message is defined
asfollows:

typedef struct {

int type;

ETERM *msg;

ETERM *to;

ETERM *from;

char to name[MAXREGLEN];
} ErlMessage;

Note:

The definition of Er | Message has changed since earlier versions of Erl_Interface.

t ype identifies the type of message, one of ERL_SEND, ERL_REG SEND, ERL LI NK, ERL_UNLI NK and
ERL_EXIT.

If t ype contains ERL_ SEND thisindicates that an ordinary send operation has taken place, and ensg- >t o contains
the Pid of the recipient. If t ype contains ERL__REG_SEND then a registered send operation took place, and ensg-
>f r omcontains the Pid of the sender. In both cases, the actual message will beinensg- >nsg.

If t ype containsone of ERL_LI NK or ERL_UNLI NK, then ensg- >t 0 and ensg- >f r omcontain the pids of the
sender and recipient of the link or unlink. emsg- >nsg isnot used in these cases.

If t ype contains ERL_EXI T, then this indicates that a link has been broken. In this case, ensg- >t 0 and ensg-
>f r omcontain the pids of the linked processes, and ensg- >nsg contains the reason for the exit.

Note:

Itisthe caller'sresponsibility to release the memory pointed to by ensg- >nsg, ensg- >t o andensg- >f r om

If atick occurs, i.e., the Erlang node on the other end of the connection has polled this node to seeif it is till alive,
the function will return ERL_TI CK indicating that the tick has been received and responded to, but no message will
be placed in the buffer. In this case you should call er | _r ecei ve_nsg() again.

On success, the function returns ERL_ MSGand the Ens g struct will be initialized as described above, or ERL_TI CK,
inwhich case no messageisreturned. Onfailure, thefunction returnsERL _ ERRORand will seter | _er r no to oneof:

EMSGSI ZE

Buffer too small.
ENOVEM

No more memory available.
El O

1/O error.

int erl xreceive msg(fd, bufpp, bufsizep, emsq)

Types:
int fd;

Ericsson AB. All Rights Reserved.: Erlang Interface | 41

erl_connect

unsi gned char **buf pp;
i nt *bufsizep;
Er | Message *ensg;
Thisfunctionissimilartoer | _r ecei ve_nsg. Thedifferenceisthat er | _xr ecei ve_nsg expectsthe buffer to

have been allocated by mal | oc, and reallocates it if the received message does not fit into the original buffer. For
that reason, both buffer and buffer length are given as pointers - their values may change by the call.

On success, the function returns ERL_ MSGand the Ens g struct will beinitialized as described above, or ERL_TI CK,
inwhich case no messageisreturned. Onfailure, thefunction returnsERL_ ERRORand will seter | _er r no to oneof:

EMSGSI ZE

Buffer too small.
ENOVEM

No more memory available.
El O

1/O error.

int erl send(fd, to, msg)
Types:
int fd;
ETERM *t o, *nsg;
This function sends an Erlang term to a process.
f d isan open descriptor to an Erlang connection.
t 0 isan Erlang term containing the Pid of the intended recipient of the message.
nsg isthe Erlang term to be sent.
The function returns 1 if successful, otherwise O --- in which case it will seter | _er r no to one of:

El NVAL

Invalid argument: t o isnot avalid Erlang pid.
ENOVEM

No more memory available.
ElI O

1/O error.

int erl reg send(fd, to, msg)
Types:

int fd;

char *to;

ETERM *nsg;

This function sends an Erlang term to a registered process.

f d isan open descriptor to an Erlang connection.

t 0 isastring containing the registered name of the intended recipient of the message.

nsg isthe Erlang term to be sent.

The function returns 1 if successful, otherwise 0 --- in which case it will seter| _err no to one of:

ENOVEM
No more memory available.

42 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_connect

El O
1/O error.

ETERM *erl rpc(fd, mod, fun, args)
int erl rpc to(fd, mod, fun, args)
int erl rpc from(fd, timeout, emsg)
Types:
int fd, tinmeout;
char *nod, *fun;
ETERM *ar gs;
Er | Message *ensg;
These functions support calling Erlang functions on remote nodes. er | _rpc_t o() sendsan rpc request to aremote

nodeand er | _rpc_fromn() receivesthe results of suchacall. erl _rpc() combines the functionality of these
two functions by sending an rpc request and waiting for the results. Seeasor pc: cal | / 4.

f d isan open descriptor to an Erlang connection.

ti meout isthe maximum time (in ms) to wait for results. Specify ERL_NO_TI MEQUT to wait forever. When
erl_rpc() callserl_rpc_from(), the call will never timeout.

nod isthe name of the module containing the function to be run on the remote node.
f un isthe name of the function to run.

ar gs isan Erlang list, containing the arguments to be passed to the function.

ensg isamessage containing the result of the function call.

The actual message returned by the rpc server isa 2-tuple{ r ex, Repl y}.If youareusinger!l rpc_from() in
your code then thisis the message you will need to parse. If you areusinger | _r pc() thenthetupleitself is parsed
for you, and the message returned to your program is the erlang term containing Repl y only. Replies to rpc requests
are aways ERL_SEND messages.

Note:

It isthe caller's responsibility to free the returned ETERMstructure as well as the memory pointed to by ensg-
>nsg and ensg- >t 0.

erl _rpc() returnstheremote function'sreturn value (or NULL if it failed). er| _rpc_t o() returns0 on success,
and anegativenumber onfailure.er | _rcp_from() returnsERL_MSGwhen successful (with Ens g now containing
thereply tuple), and oneof ERL_ Tl CK, ERL_ Tl MEQUT and ERL_ ERROR otherwise. When failing, all threefunctions
seter| _errno tooneof:

ENOVEM
No more memory available.
El O
1/O error.
ETI MEDOUT
Timeout expired.
EAGAI N
Temporary error: Try again.

Ericsson AB. All Rights Reserved.: Erlang Interface | 43

erl_connect

int erl publish(port)
Types:
int port;
These functions are used by a server process to register with the local name server epmd, thereby allowing other

processes to send messages by using the registered name. Before calling either of these functions, the process should
have called bi nd() and!l i st en() onan open socket.

port istheloca nameto register, and should be the same as the port number that was previously bound to the socket.
To unregister with epmd, simply close the returned descriptor.

On success, the functions return a descriptor connecting the calling process to epmd. On failure, they return -1 and
seterl| _errno to:

El O
1/O error

Additionally, er r no valuesfrom socket (2) and connect (2) system calls may be propagated into er | _er r no.

int erl accept(listensock, conp)
Types:

int |istensock;

Er | Connect *conp;

Thisfunction is used by a server process to accept a connection from a client process.
| i st ensock isan open socket descriptor onwhich |l i st en() has previously been called.
conp isapointer to an Er | Connect struct, described as follows:

typedef struct {

char ipadr[4];

char nodename[MAXNODELEN];
} ErlConnect;

On success, conp isfilled in with the address and node name of the connecting client and afile descriptor isreturned.
Onfailure, ERL_ERRORisreturnedander| _errnoissettoEl O

const char *erl thiscookie()
const char *erl thisnodename()
const char *erl thishostname()
const char *erl thisalivename()
short erl thiscreation()

These functions can be used to retrieve information about the C Node. These values are initialy set with
erl _connect _init() orerl _connect _xinit().

int erl unpublish(alive)
Types:
char *alive;

This function can be called by a process to unregister a specified node from epmd on the localhost. Thisis however
usually not allowed, unless epmd was started with the -relaxed_command_check flag, which it normally isn't.

44 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_connect

To unregister a node you have published, you should instead close the descriptor that was returned by
ei _publish().

Warning:

This function is deprecated and will be removed in a future release.

al i ve isthe name of the node to unregister, i.e., the first component of the nodename, without the @ost nane.

If the node was successfully unregistered from epmd, the function returns 0. Otherwise, it returns -1 and sets
erl _errnoistoEl O

struct hostent *erl gethostbyname(name)
struct hostent *erl gethostbyaddr(addr, length, type)
struct hostent *erl gethostbyname r(name, hostp, buffer, buflen, h errnop)

struct hostent *erl gethostbyaddr r(addr, length, type, hostp, buffer,
buflen, h _errnop)

Types.
const char *nane;
const char *addr;
int |ength;
int type;
struct hostent *hostp;
char *buffer;
i nt buflen;
int *h_errnop;

These are convenience functions for some common name lookup functions.

Debug Information
If aconnection attempt fails, the following can be checked:

e erl_errno
e that theright cookie was used
e that epmdisrunning

» theremote Erlang node on the other side is running the same version of Erlang astheer| _i nterf ace
library.

Ericsson AB. All Rights Reserved.: Erlang Interface | 45

erl_error

erl_error
C Library

This module contains some error printing routines taken from Advanced Programming in the UNIX Environment by
W. Richard Stevens.

Thesefunctionsareall called inthesamemanner aspr i nt f () ,i.e. with astring containing format specifiersfollowed
by alist of corresponding arguments. All output from these functionsisto st derr .

Exports

void erl err msg(FormatStr, ...)
Types:
const char *Format Str;
The message provided by the caller is printed. This functionis simply awrapper for f pri ntf ().

void erl err _quit(FormatStr, ...)
Types:
const char *Fornmat Str;

Use this function when afatal error has occurred that is not due to a system call. The message provided by the caller
is printed and the process terminates with an exit value of 1. The function does not return.

void erl err ret(FormatStr, ...)
Types:
const char *Fornat Str;

Usethisfunction after afailed system call. The message provided by the caller is printed followed by astring describing
the reason for failure.

void erl err sys(FormatStr, ...)
Types:
const char *Format Str;
Usethisfunction after afailed system call. The message provided by thecaller is printed followed by astring describing

the reason for failure, and the process terminates with an exit value of 1. The function does not return.
Error Reporting

Most functionsin erl_interface report failures to the caller by returning some otherwise meaningless value (typically
NULL or anegative number). Asthisonly tellsyou that things did not go well, you will have to examine the error code
iner| _errno if youwant to find out more about the failure.

Exports
volatile int erl _errno

erl _errnoisinitialy (at program startup) zero and is then set by many erl_interface functions on failure to a non-
zero error code to indicate what kind of error it encountered. A successful function call might changeer | _err no

46 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_error

(by calling some other function that fails), but no function will ever set it to zero. This means that you cannot use
erl _errnotoseeif afunction cal failed. Instead, each function reportsfailurein its own way (usually by returning
anegative number or NULL), in which case you can examineer | _er r no for details.

er | _errno usesthe error codes defined in your system's<er r no. h>.

Note:

Actudly, er| _errnoisa"modifiablelvalue" (just like SO C defineser r no to be) rather than avariable. This
means it might be implemented as a macro (expanding to, eg., * _erl _errno()). For reasons of thread- (or
task-)safety, thisis exactly what we do on most platforms.

Ericsson AB. All Rights Reserved.: Erlang Interface | 47

erl_eterm

erl_eterm
C Library

This module contains functions for creating and manipulating Erlang terms.

An Erlang term is represented by a C structure of type ETERM Applications should not reference any fields in this
structure directly, because it may be changed in future releases to provide faster and more compact term storage.
Instead, applications should us the macros and functions provided.

The following macros each take a single ETERM pointer as an argument. They return a non-zero value if the test is
true, and O otherwise:

ERL_|I'S I NTEGER(t)
Trueif t isan integer.
ERL_|I' S _UNSI GNED_I NTEGER(t)
Trueif t isan integer.
ERL_I'S FLOAT(t)
Trueif t isafloating point number.
ERL_ IS ATOM t)
Trueif t isan atom.
ERL_IS PID(t)
Trueif t isaPid (processidentifier).
ERL_I' S PORT(t)
Trueif t isaport.
ERL_I'S REF(t)
Trueif t isareference.
ERL_|I'S TUPLE(t)
Trueif t isatuple.
ERL_I'S BI NARY(t)
Trueif t isabinary.
ERL_IS LIST(t)
Trueif t isalist with zero or more elements.
ERL_I'S EMPTY_LI ST(t)
Trueif t isan empty list.
ERL_|I'S CONS(t)
Trueif t isalist with at least one element.

Thefollowing macros can be used for retrieving parts of Erlang terms. None of these do any type checking; resultsare
undefined if you pass an ETERM* containing the wrong type. For example, passing atupleto ERL_ATOM_PTR()
will likely result in garbage.

char *ERL_ATOM PTR(t)
char *ERL_ATOM PTR_UTF8(t)
A string representing atom t .
int ERL_ATOM SI ZE(t)
int ERL_ATOM SI ZE_UTF8(t)
The length (in bytes) of atomt.
void *ERL_BI N_PTR(t)
A pointer to the contents of t
int ERL_BIN SIZE(t)
The length (in bytes) of binary object t .
int ERL_I NT_VALUE(t)
Theinteger of t .

48 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_eterm

unsi gned int ERL_I NT_UVALUE(t)
The unsigned integer value of t .
doubl e ERL_FLOAT_VALUE(t)
The floating point value of t .
ETERM *ERL_PI D_NCDE(t)
ETERM *ERL_PI D NCDE_UTF8(t)
TheNodeinpidt .
int ERL_PI D NUMBER(t)
The sequence number in pidt .
int ERL_PID SERIAL(t)
The serial number inpidt .
int ERL_PI D CREATI ON(t)
The creation number inpidt .
int ERL_PORT_NUMBER(t)
The sequence number in port t .
int ERL_PORT_CREATI O\(t)
The creation number in portt .
ETERM * ERL_PORT_NODE(t)
ETERM * ERL_PORT_NODE_UTF8(t)
Thenodeinportt .
int ERL_REF_NUMBER(t)

Thefirst part of the reference number inref t . Use only for compatibility.

int ERL_REF_NUVBERS(1)

Pointer to the array of reference numbersinref t .
int ERL_REF _LEN(t)

The number of used reference numbersinref t .
int ERL_REF_CREATI ON(t)

The creation number inref t .
int ERL_TUPLE SI ZE(t)

The number of elementsintuplet .
ETERM * ERL_CONS HEAD(1)

The head element of listt .
ETERM *ERL_CONS TAI L(t)

A List representing the tail elements of listt .

Exports

ETERM *erl cons(head, tail)
Types:

ETERM * head;

ETERM *tai l ;

Thisfunction concatenatestwo Erlang terms, prepending head ontot ai | and thereby creatingacons cell. To make

aproper list, t ai | should always be alist or an empty list. Note that NULL isnot avalid list.

head isthe new term to be added.
tai | istheexisting list to which head will be concatenated.
The function returns anew list.

ERL_CONS_HEAD(list) and ERL_CONS TAI L(li st) can be used to retrieve the head and tail components
fromthelist. erl _hd(list) anderl _tl (list) will dothe same thing, but check that the argument really is

alist.

Ericsson AB. All Rights Reserved.: Erlang Interface | 49

erl_eterm

For example:

ETERM *1list,*anAtom,*anInt;

anAtom = erl mk atom("madonna");
anInt = erl mk int(21);

list = erl mk empty list();
list = erl cons(anAtom, list);
list = erl cons(anInt, list);

. /* do some work */
erl free compound(list);

ETERM *erl copy term(term)
Types:
ETERM *term
This function creates and returns a copy of the Erlangtermt er m

ETERM *erl element(position, tuple)
Types:
int position;
ETERM *t upl e;
This function extracts a specified element from an Erlang tuple.
posi ti on specifieswhich element to retrieve fromt upl e. The elements are numbered starting from 1.
t upl e isan Erlang term containing at least posi t i on elements.

The function returns a new Erlang term corresponding to the requested element, or NULL if posi t i on was greater
than the arity of t upl e.

void erl _init(NULL, 0O)
Types:
voi d *NULL;
int O;
This function must be called before any of the othersintheer | _i nt er f ace library in order to initialize the library
functions. The arguments must be specified aser | _i ni t (NULL, 0) .

ETERM *erl hd(list)
Types:
ETERM *| i st ;
Extracts the first element from alist.
| i st isan Erlang term containing alist.

The function returns an Erlang term corresponding to the head element in the list, or a NULL pointer if | i st was
not alist.

ETERM *erl iolist to binary(term)
Types:

50 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_eterm

ETERM *| i st ;
This function convertsan IO list to abinary term.
| i st isan Erlang term containing alist.
This function an Erlang binary term, or NULL if | i st wasnot an IO list.

Informally, an 1O list isadeep list of characters and binaries which can be sent to an Erlang port. In BNF, an 10 list
isformally defined asfollows:

iolist ::= []
| Binary
| [iohead | iolist]
iohead ::= Binary
| Byte (integer in the range [0..255])
| iolist

’

char *erl iolist to string(list)
Types:
ETERM *| i st ;
This function convertsan 1O list to a'\O' terminated C string.

I i st isan Erlang term containing an 1O list. The 10 list must not contain the integer O, since C strings may not
contain this value except as aterminating marker.

Thisfunction returnsapointer to adynamically allocated buffer containingastring. If | i st isnotanlOlist, orifl i st
contains theinteger 0, NULL isreturned. It isthe caller's responsibility free the allocated buffer wither | _free().

Refertoer| _i ol i st_to_bi nary() forthe definition of an 10 list.

int erl iolist length(list)
Types:
ETERM *| i st ;
Returns the length of an 1O list.
| i st isan Erlang term containing an 1O list.
The function returnsthe length of | i st , or-1if | i st isnotan IO list.

Refertoer!| _iolist_to_binary() forthedefinition of an 10 list.

int erl length(list)
Types:
ETERM *| i st ;
Determines the length of a proper list.

| i st isan Erlang term containing proper list. In a proper list, al tails except the last point to another list cell, and
the last tail pointsto an empty list.

Returns-1if | i st isnot aproper list.

Ericsson AB. All Rights Reserved.: Erlang Interface | 51

erl_eterm

ETERM *erl mk atom(string)
Types:
const char *string;
Creates an atom.
st ri ng isthe sequence of characters that will be used to create the atom.

Returnsan Erlang term containing an atom. Notethat it isthe callersresponsibility to make surethat st r i ng contains
avalid name for an atom.

ERL_ATOM PTR(at on) and ERL_ATOM PTR _UTF8(at on) can be used to retrieve the atom name (as a null
terminated string). ERL_ATOM S| ZE(at on) andERL_ATOM S| ZE_UTF8(at om) returnsthelength of theatom
name.

Note:

Note that the UTF8 variants were introduced in Erlang/OTP releases R16 and the string returned by
ERL_ATOM PTR(at onm) was not null terminated on older releases.

ETERM *erl mk binary(bptr, size)

Types:
char *bptr;
int size;

This function produces an Erlang binary object from abuffer containing a sequence of bytes.

bpt r isapointer to a buffer containing data to be converted.

si ze indicates the length of bpt r .

The function returns an Erlang binary object.

ERL_BI N_PTR(bi n) retrievesapointer to the binary data. ERL_BI N_SI ZE(bi n) retrievesthe size.

ETERM *erl mk empty list()
This function creates and returns an empty Erlang list. Note that NULL is not used to represent an empty list; Use
this function instead.

ETERM *erl mk estring(string, len)

Types:
char *string;
int |en;

This function creates a list from a sequence of bytes.
st ri ng isabuffer containing a sequence of bytes. The buffer does not need to be zero-terminated.
| enisthelength of stri ng.

The function returns an Erlang list object corresponding to the character sequencein st ri ng.

ETERM *erl mk float(f)
Types:

52 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_eterm

doubl e f;
Creates an Erlang float.
f isavalue to be converted to an Erlang float.

The function returns an Erlang float object with the value specifiedin f .
ERL_FLOAT_VALUE(t) can be used to retrieve the value from an Erlang float.

ETERM *erl mk_int(n)
Types:
int n;
Creates an Erlang integer.
n isavalueto be converted to an Erlang integer.

The function returns an Erlang integer object with the value specified in n.
ERL_| NT_VALUE(t) can be used to retrieve the value value from an Erlang integer.

ETERM *erl mk list(array, arrsize)
Types.

ETERM **array;

int arrsize;

Creates an Erlang list from an array of Erlang terms, such that each element in the list corresponds to one element
inthe array.

arr ay isan array of Erlang terms.
arr si ze isthe number of elementsinarr ay.

The function creates an Erlang list object, whose length ar r si ze and whose elements are taken from the termsin
array.

ETERM *erl mk pid(node, number, serial, creation)
Types:

const char *node;

unsi gned i nt nunber;

unsi gned int serial;

unsi gned int creation;

This function creates an Erlang process identifier. The resulting pid can be used by Erlang processes wishing to
communicate with the C node.

node isthe name of the C node.

nunber, seri al andcreati on are arbitrary numbers. Note though, that these are limited in precision, so only
thelow 15, 3 and 2 bits of these numbers are actually used.

The function returns an Erlang pid object.

ERL_PI D_NODE(pi d), ERL_PI D_NUMBER(pi d), ERL_PI D_SERI AL(pi d) and
ERL_PI D CREATI ON(pi d) can be used to retrieve the four values used to create the pid.

Ericsson AB. All Rights Reserved.: Erlang Interface | 53

erl_eterm

ETERM *erl mk port(node, number, creation)
Types.

const char *node;

unsi gned int nunber;

unsi gned int creation;

This function creates an Erlang port identifier.
node isthe name of the C node.

nurber and cr eat i on are arbitrary numbers. Note though, that these are limited in precision, so only the low 18
and 2 bits of these numbers are actually used.

The function returns an Erlang port object.

ERL_PORT_NODE(port),ERL_PORT_NUMBER(port) and ERL_PORT_CREATI ONcanbeusedtoretrievethe
three values used to create the port.

ETERM *erl mk ref(node, number, creation)
Types:

const char *node;

unsi gned i nt nunber;

unsi gned int creation;

This function creates an old Erlang reference, with only 18 bits- useer| _nk_| ong_r ef instead.
node isthe name of the C node.

nunber should be chosen uniquely for each reference created for a given C node.

creat i on isan arbitrary number.

Notethat nurber andcr eat i on arelimited in precision, so only thelow 18 and 2 bits of these numbers are actually
used.

The function returns an Erlang reference object.

ERL_REF NODE(ref), ERL_REF NUMBER(ref), and ERL_REF CREATI ON(ref) to retrieve the three
values used to create the reference.

ETERM *erl mk long ref(node, nl, n2, n3, creation)
Types:

const char *node;

unsigned int nl, n2, n3;

unsi gned int creation;

This function creates an Erlang reference, with 82 bits.
node isthe name of the C node.

nl, n2 and n3 can be seen as one big number n1* 2”2 64+n2* 2~ 32+n3 which should be chosen uniquely for each
reference created for agiven C node.

creat i on isan arbitrary number.
Notethat n3 andcr eat i on arelimited in precision, so only thelow 18 and 2 bits of these numbers are actually used.
The function returns an Erlang reference object.

54 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_eterm

ERL_REF_NODE(r ef), ERL_REF_NUMBERS(r ef), ERL_REF_LEN(r ef) and
ERL_REF_CREATI O\(r ef) to retrieve the values used to creste the reference.

ETERM *erl mk string(string)
Types:
char *string;
Thisfunction creates alist from a zero terminated string.
st ri ng isthe zero-terminated sequence of characters (i.e. a C string) from which the list will be created.

The function returns an Erlang list.

ETERM *erl mk tuple(array, arrsize)
Types:

ETERM **array;

int arrsize;

Creates an Erlang tuple from an array of Erlang terms.

array isan array of Erlang terms.

arr si ze isthe number of elementsinarr ay.

The function creates an Erlang tuple, whose arity issi ze and whose elements are taken from thetermsin ar r ay.

Toretrievethesizeof atuple, either usetheer | _si ze function (which checksthetype of the checked term and works
for abinary aswell asfor atuple), or the ERL_TUPLE_SI ZE(t upl e) returnsthe arity of atuple. er | _si ze()
will do the same thing, but it checks that the argument really isatuple. er| _el ement (i ndex, t upl e) returns
the element corresponding to a given position in the tuple.

ETERM *erl mk uint(n)
Types:
unsi gned int n;
Creates an Erlang unsigned integer.
n isavalueto be converted to an Erlang unsigned integer.

The function returns an Erlang unsigned integer object with the value specified in n.
ERL_I NT_UVALUE(t) can be used to retrieve the value from an Erlang unsigned integer.

ETERM *erl mk var(name)
Types:
char *nane;

This function creates an unbound Erlang variable. The variable can later be bound through pattern matching or
assignment.

nane specifies aname for the variable.
The function returns an Erlang variable object with the name nane.

int erl print term(stream, term)

Types:
FI LE *stream

Ericsson AB. All Rights Reserved.: Erlang Interface | 55

erl_eterm

ETERM *term
This function prints the specified Erlang term to the given output stream.
st r eamindicates where the function should send its output.
t er misthe Erlang term to print.
The function returns the number of characters written, or a negative value if there was an error.

void erl_set compat rel(release number)
Types:
unsi gned rel ease_nunber;

By default, theer | _i nt erface library is only guaranteed to be compatible with other Erlang/OTP components
from the samerelease astheer | _i nt er f ace library itself. For example, er| _i nt er f ace from the OTP R10
release is not compatible with an Erlang emulator from the OTP R9 release by default.

Acdltoer| set _conpat rel (rel ease_nunber) setstheer!| _i nt erface library incompatibility mode
of releaser el ease_nunber . Vaidrangeof r el ease_nunber is[7, current release]. This makesit possible to
communicate with Erlang/OTP components from earlier releases.

Note:
If thisfunction is called, it may only be called once directly after the call to the erl_init() function.

Warning:

Y ou may run into trouble if thisfeatureis used carelessly. Always make sure that all communicating components
are either from the same Erlang/OTP release, or from release X and release Y where all components from release
Y arein compatibility mode of release X.

int erl size(term)
Types:
ETERM *term
Returns the arity of an Erlang tuple, or the number of bytesin an Erlang binary object.
t er misan Erlang tuple or an Erlang binary object.
The function returns the size of t er mas described above, or -1 if t er mis not one of the two supported types.

ETERM *erl tl(list)
Types:
ETERM *1i st ;
Extracts thetail from alist.
| i st isan Erlang term containing alist.

Thefunction returns an Erlang list corresponding to the original list minusthe first element, or NULL pointer if | i st
was not alist.

56 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_eterm

ETERM *erl var_content(term, name)
Types:
ETERM *term
char *nane;
This function returns the contents of the specified variable in an Erlang term.

t er mis an Erlang term. In order for this function to succeed, t er mmust be an Erlang variable with the specified
name, or it must be an Erlang list or tuple containing a variable with the specified name. Other Erlang types cannot
contain variables.

nane isthe name of an Erlang variable.

Returnsthe Erlang object corresponding to the value of nane int er m If no variable with the name nane wasfound
int ermoriftermisnotavalid Erlang term, NULL is returned.

Ericsson AB. All Rights Reserved.: Erlang Interface | 57

erl_format

erl_format
C Library

This module contains two routines - one general function for creating Erlang terms and one for pattern matching
Erlang terms.

Exports

ETERM *erl format(FormatStr, ...)
Types:
char *Fornmat Str;

Thisis a genera function for creating Erlang terms using a format specifier and a corresponding set of arguments,
muchintheway pri nt f () works.

For mat St r isaformat specification string. The set of valid format specifiersis asfollows:

e ~i-Integer

» ~f- Floating point

* ~a-Atom

e ~s-String

e ~w - Arbitrary Erlang term

For each format specifier that appears in For mat Str, there must be a corresponding argument following

For mat St r. An Erlang term is built according to the For mat St r with values and Erlang terms substituted from
the corresponding arguments and according to the individual format specifiers. For example:

erl format("[{name,~a}, {age,~i},{data,~w}]",
"madonna",
21,
erl format("[{adr,~s,~i}]","E-street",42));

This will create an (ETERM *) structure corresponding to the Erlang term: [{ nane, nadonna}, { age, 21},
{data, [{adr,"E-street", 42}]}]

The function returns an Erlang term, or NULL if For mat St r does not describe avalid Erlang term.

int erl match(Pattern, Term)
Types.
ETERM *Pattern, *Term

Thisfunctionisused to perform pattern matching similar to that donein Erlang. Refer to an Erlang manual for matching
rules and more examples.

Pat t er n isan Erlang term, possibly containing unbound variables.
Ter mis an Erlang term that we wish to match against Pat t er n.

Ter mand Pat t er n are compared, and any unbound variablesin Pat t er n are bound to corresponding values in
Term

58 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_format

If Ter mand Pat t er n can be matched, the function returns a non-zero value and binds any unbound variables in
Pat t er n. If Ter mPat t er n do not match, the function returns 0. For example:

ETERM *term, *pattern, *pattern2;

terml = erl format("{14,21}");
term2 = erl format("{19,19}");
patternl = erl format("{A,B}");
pattern2 = erl format("{F,F}"

I
if (erl match(patternl, terml)) {
/* match succeeds:
* A gets bound to 14,
* B gets bound to 21
*/

X Ca
if (erl match(pattern2, terml)) {
/* match fails because F cannot be
* bound to two separate values, 14 and 21
*/
}

if (erl match(pattern2, term2)) {
/* match succeeds and F gets bound to 19 */

erl _var_content() can be used to retrieve the content of any variables bound as a result of a cal to
erl _match().

Ericsson AB. All Rights Reserved.: Erlang Interface | 59

erl_global

erl_global
C Library

This module provides support for registering, looking up and unregistering names in the Erlang Globa module. For
more information, see the description of Global in the reference manual .

Note that the functions below perform an RPC using an open file descriptor provided by the caller. Thisfile descriptor
must not be used for other traffic during the global operation or the function may receive unexpected data and fail.

Exports

char **erl global names(fd,count)
Types:

int fd;

int *count;

Retrieve alist of all known global names.
f d isan open descriptor to an Erlang connection.

count isthe address of an integer, or NULL. If count isnot NULL, it will be set by the function to the number
of names found.

On success, the function returns an array of strings, each containing a single registered name, and sets count to the
number of names found. The array is terminated by a single NULL pointer. On failure, the function returns NULL
and count isnot modified.

Note:

Itisthe caler's responsibility to free the array afterwards. It has been alocated by the function with asingle call
tomal | oc(),soasinglefree() isall that is necessary.

int erl global register(fd,name,pid)
Types.

int fd;

const char *nane;

ETERM * pi d;
This function registersaname in Global.
f d isan open descriptor to an Erlang connection.
nane isthe name to register in Global.

pi d isthe pid that should be associated with name. Thisis the value that Global will return when processes request
the location of nane.

The function returns 0 on success, or -1 on failure.

int erl global unregister(fd,name)
Types:

60 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_global

int fd;
const char *nane;

This function unregisters a name from Global .

f d isan open descriptor to an Erlang connection.
narme isthe name to unregister from Global.

The function returns 0 on success, or -1 on failure.

ETERM *erl global whereis(fd,name,node)
Types:

int fd;

const char *nane;

char *node;

f d isan open descriptor to an Erlang connection.
nane isthe name that isto be looked up in Global.

If node isnot NULL, it is a pointer to a buffer where the function can fill in the name of the node where nane is
found. node can be passed directly toer | _connect () if necessary.

On success, the function returns an Erlang Pid containing the address of the given name, and node will be initialized
to the nodename where nane isfound. On failure NULL will be returned and node will not be modified.

Ericsson AB. All Rights Reserved.: Erlang Interface | 61

erl_malloc

erl_malloc
C Library

This module provides functions for allocating and deallocating memory.

Exports

ETERM *erl alloc eterm(etype)
Types:
unsi gned char etype;
Thisfunction allocates an (ETERM) structure. Specify et ype as one of the following constants:

* ERL_INTEGER

e ERL_U INTEGER/* unsigned integer */

e ERL_ATOM

e ERL_PID/* Erlang process identifier */

+ ERL_PORT
 ERL_REF/* Erlang reference */
e ERL_LIST

e ERL_EMPTY_LIST

e ERL_TUPLE

+ ERL_BINARY

e ERL_FLOAT

» ERL_VARIABLE

« ERL_SMALL_BIG/* bignum */

* ERL_U SMALL_BIG/* bignum */

ERL_SMALL_BI Gand ERL_U SMALL_BI G are for creating Erlang bi gnuns, which can contain integers of

arbitrary size. The size of an integer in Erlang is machine dependent, but in general any integer larger than 2/28
requires a bignum.

void erl _eterm release(void)

Clears the freelist, where blocks are placed when they are released by erl free tern() and
erl _free_conpound().

void erl eterm statistics(allocated, freed)
Types.
I ong *al |l ocat ed;
l ong *freed;
al | ocat ed and f r eed are initialized to contain information about the fix-allocator used to alocate ETERM

components. al | ocat ed isthe number of blocks currently allocated to ETERM objects. f r eed isthe length of the
freelist, where blocks are placed when they arereleased by er| _free_tern() anderl _free_conpound().

void erl free array(array, size)
Types:

62 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_malloc

ETERM **array;

int size;
This function frees an array of Erlang terms.
array isan array of ETERM* objects.
Si ze isthe number of termsin the array.

void erl free term(t)
Types:
ETERM *t ;
Use this function to free an Erlang term.

void erl free compound(t)
Types:
ETERM *t ;
Normally it is the programmer's responsibility to free each Erlang term that has been returned from any of the
erl _i nterface functions. However since many of the functions that build new Erlang terms in fact share objects

with other existing terms, it may be difficult for the programmer to maintain pointers to all such terms in order to
free them individualy.

erl _free_conpound() will recursively free all of the sub-terms associated with a given Erlang term, regardless
of whether we are till holding pointers to the sub-terms.

Thereisan example in the User Manual under "Building Terms and Patterns”

void erl malloc(size)
Types:
| ong si ze;
This function calls the standard mal | oc() function.

void erl free(ptr)
Types:
void *ptr;
Thisfunction callsthe standard f r ee() function.

Ericsson AB. All Rights Reserved.: Erlang Interface | 63

erl_marshal

erl_marshal
C Library

This module contains functions for encoding Erlang terms into a sequence of bytes, and for decoding Erlang terms
from a sequence of bytes.

Exports

int erl compare ext(bufpl, bufp2)
Types:
unsi gned char *buf pl, *buf p2;
This function compares two encoded terms.
buf p1 isabuffer containing an encoded Erlang term term1.
buf p2 isabuffer containing an encoded Erlang term term?2.

The function returns 0 if the terms are equal, -1 if term1 islessthan term2, or 1 if term2 isless than term1.

ETERM *erl decode(bufp)
ETERM *erl decode buf(bufpp)
Types:
unsi gned char *buf p;
unsi gned char **buf pp;
erl _decode() and erl decode_buf () decode the contents of a buffer and return the corresponding

Erlang term. er | _decode_buf () provides a smple mechanism for dealing with several encoded terms stored
consecutively in the buffer.

buf p isapointer to a buffer containing one or more encoded Erlang terms.

buf pp is the address of a buffer pointer. The buffer contains one or more consecutively encoded Erlang terms.
Following a successful call toer| _decode_buf (), buf pp will be updated so that it points to the next encoded
term.

erl _decode() returns an Erlang term corresponding to the contents of buf p on success, or NULL on failure.
erl _decode_buf () returns an Erlang term corresponding to the first of the consecutive terms in buf pp and
moves buf pp forward to point to the next term in the buffer. On failure, each of the functions returns NULL.

int erl encode(term, bufp)
int erl encode buf(term, bufpp)
Types.

ETERM *term

unsi gned char *buf p;

unsi gned char **buf pp

erl _encode() anderl _encode_buf () encode Erlang terms into external format for storage or transmission.
erl _encode_buf () providesasimple mechanism for encoding several terms consecutively in the same buffer.

t er misan Erlang term to be encoded.
buf p isapointer to a buffer containing one or more encoded Erlang terms.

64 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_marshal

buf pp isapointer to a pointer to a buffer containing one or more consecutively encoded Erlang terms. Following a
successful call toer | _encode_buf (), buf pp will be updated so that it points to the position for the next encoded
term.

These functions returns the number of bytes written to buffer if successful, otherwise returns 0.

Note that no bounds checking is done on the buffer. It isthe caller's responsibility to make sure that the buffer islarge
enough to hold the encoded terms. Y ou can either use a static buffer that islarge enough to hold the terms you expect
to need in your program, or useer | _term | en() to determine the exact requirements for a given term.

The following can help you estimate the buffer requirements for aterm. Note that thisinformation is implementation
specific, and may change in future versions. If you are unsure, useer|l _term | en().

Erlang terms are encoded with a 1 byte tag that identifies the type of object, a 2- or 4-byte length field, and then the
dataitself. Specifically:
Tupl es
need 5 bytes, plus the space for each element.
Li sts
need 5 bytes, plus the space for each element, and 1 additional byte for the empty list at the end.
Strings and atons
need 3 bytes, plus 1 byte for each character (the terminating 0 is not encoded). Really long strings (more than
64k characters) are encoded as lists. Atoms cannot contain more than 256 characters.
| nt egers
need 5 bytes.
Char acters
(integers < 256) need 2 bytes.
Fl oati ng poi nt nunbers
need 32 bytes.
Pi ds
need 10 bytes, plus the space for the node name, which is an atom.
Ports and Refs
need 6 bytes, plus the space for the node name, which is an atom.

The total space required will be the result calculated from the information above, plus 1 additional byte for a version
identifier.

int erl ext size(bufp)
Types:
unsi gned char *buf p;
This function returns the number of elementsin an encoded term.

unsigned char erl ext type(bufp)
Types:
unsi gned char *buf p;
This function identifies and returns the type of Erlang term encoded in a buffer. It will skip atrailing magic identifier.
Returns O if the type can't be determined or one of
e ERL_INTEGER
e ERL_ATOM
e ERL_PID/* Erlang process identifier */
e ERL_PORT
e ERL_REF/* Erlang reference */

Ericsson AB. All Rights Reserved.: Erlang Interface | 65

erl_marshal

e ERL_EMPTY_LIST
e ERL_LIST

« ERL_TUPLE

« ERL_FLOAT

« ERL_BINARY

« ERL_FUNCTION

unsigned char *erl peek ext(bufp, pos)
Types:
unsi gned char *buf p;
i nt pos;
This function is used for stepping over one or more encoded termsin a buffer, in order to directly access alater term.
buf p isapointer to a buffer containing one or more encoded Erlang terms.
pos indicates how many termsto step over in the buffer.

The function returns a pointer to a sub-term that can be used in a subsequent call to er| _decode() in order to
retrieve the term at that position. If there is no term, or pos would exceed the size of the termsin the buffer, NULL
is returned.

int erl term len(t)
Types:
ETERM *t ;

This function determines the buffer space that would be needed by t if it were encoded into Erlang external format
by erl _encode().

Thesizein bytesis returned.

66 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_call

erl_call

Command

erl _call makes it possible to start and/or communicate with a distributed Erlang node. It is built upon the
erl _interface library as an example application. Its purpose is to use an Unix shell script to interact with a
distributed Erlang node. It performs all communication with the Erlang rex server, using the standard Erlang RPC
facility. It does not require any special software to be run at the Erlang target node.

The main use is to either start a distributed Erlang node or to make an ordinary function call. However, it is also
possible to pipe an Erlang moduleto er | _cal | and have it compiled, or to pipe a sequence of Erlang expressions
to be evaluated (similar to the Erlang shell).

Options, which causest di n to beread, can be used with advantage as scriptsfrom within (Unix) shell scripts. Another
niceuseof erl _cal | could be from (http) CGlI-bin scripts.

Exports

erl call <options>
Each option flag is described below with its name, type and meaning.
-a[Mod [Fun [Args]]]]

(optional): Applies the specified function and returns the result. Mod must be specified, however st art and
[1 are assumed for unspecified Fun and Ar gs, respectively. Ar gs should be in the same format as for
er | ang: appl y/ 3. Note that this flag takes exactly one argument, so quoting may be necessary in order to
group Mod, Fun and Ar gs, in amanner dependent on the behavior of your command shell.

-c Cookie

(optional): Usethisoption to specify acertain cookie. If no cookieisspecified, the~/ . er | ang. cooki e fileis
read and its content are used as cookie. The Erlang node we want to communicate with must have the same cookie.

-d
(optional): Debug mode. This causes al 10 to be output to the file~/ . er| _cal | . out . Nodenane, where
Nodenarre isthe node name of the Erlang node in question.

-e
(optional): Reads a sequence of Erlang expressions, separated by ', and ended with a'.', from st di n until EOF
(Control-D). Evaluates the expressions and returns the result from the last expression. Returns { ok, Resul t }
if successful.

-h HiddenName
(optional): Specifiesthe name of the hidden nodethat er | _cal | represents.

-m
(optional): Reads an Erlang module from st di n and compilesit.

-n Node

(oneof - n, -name, -snaneisrequired): Hasthe samemeaning as- nane and can still be used for backwards
compatibility reasons.

Ericsson AB. All Rights Reserved.: Erlang Interface | 67

erl_call

-name Node

(oneof - n, -nane, -snane isrequired): Node isthe name of the nodeto be started or communicated with.
Itisassumed that Node isstartedwither | - name, which meansthat fully qualified long node names are used.
If the - s option is given, an Erlang node will (if necessary) be started wither | - nane.

-q
(optional): Halts the Erlang node specified with the -n switch. This switch overrides the -s switch.

-r
(optional): Generates a random name of the hidden nodethat er | _cal | represents.

-S
(optional): Startsadistributed Erlang node if necessary. This meansthat in asequence of calls, wherethe'- s'and
-n Node' are constant, only the first call will start the Erlang node. This makes the rest of the communication
very fast. Thisflagis currently only available on the Unix platform.

-sname Node
(oneof - n, -nane, -snane isrequired): Node isthe name of the nodeto be started or communicated with.
Itisassumed that Node isstarted wither | - snanme which meansthat short node names are used. If - s option
isgiven, an Erlang node will be started (if necessary) wither| - snane.

-V
(optional): Prints a lot of ver bose information. This is only useful for the developer and maintainer of
erl _call.

-X ErlScript
(optional): Specifies another name of the Erlang start-up script to be used. If not specified, the standard er |
start-up script is used.

Examples

Starts an Erlang node and callser | ang: ti ne/ 0.

erl call -s -a 'erlang time' -n madonna
{18,27,34}

Terminates an Erlang node by calling er | ang: hal t / 0.

erl call -s -a 'erlang halt' -n madonna

An apply with several arguments.

erl call -s -a 'lists map [{math,sqrt},[1,4,9,16,25]]' -n madonna

68 | Ericsson AB. All Rights Reserved.: Erlang Interface

erl_call

Evaluates a couple of expressions. Theinput endswith EOF (Control-D).

erl call -s -e -n madonna
statistics(runtime),

X=1,

Y=2,

{ ,T}=statistics(runtime),
{X+Y,T}.

~D

{ok,{3,0}}

Compiles a module and runs it. Again, the input ends with EOF (Control-D). (In the example shown, the output
has been formatted afterwards).

erl call -s -m -a lolita -n madonna

-module(lolita).

-compile(export_all).

start() ->

P
F

processes(),
fun(X) -> {X,process info(X, registered name)} end,

lists:map(F,[1,P).

~D
[{<madonna@chivas

{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.
{<madonna@chivas.

{<madonna@chivas.

du.etx.ericsson.se,0,0>,
{registered name,init}},
du.etx.ericsson.se,2,0>,
{registered name,erl prim loader}},
du.etx.ericsson.se,4,0>,
{registered name,error _logger}},
du.etx.ericsson.se,5,0>,
{registered name,application controller}},
du.etx.ericsson.se,6,0>,
{registered name, kernel}},
du.etx.ericsson.se,7,0>,

[1},

du.etx.ericsson.se,8,0>,
{registered name, kernel sup}},
du.etx.ericsson.se,9,0>,
{registered name,net sup}},
du.etx.ericsson.se, 10,0>,
{registered name,net kernel}},
du.etx.ericsson.se,11,0>,

[1},

du.etx.ericsson.se,12,0>,
{registered name,global name server}},
du.etx.ericsson.se, 13,0>,
{registered name,auth}},
du.etx.ericsson.se, 14,0>,
{registered name, rex}},
du.etx.ericsson.se, 15,0>,

[1},

du.etx.ericsson.se, 16,0>,
{registered name,file server}},
du.etx.ericsson.se,17,0>,
{registered name,code server}},
du.etx.ericsson.se,20,0>,
{registered name,user}},
du.etx.ericsson.se,38,0>,

[1}]

Ericsson AB. All Rights Reserved

.. Erlang Interface | 69

erl_call

70 | Ericsson AB. All Rights Reserved.: Erlang Interface

	Erlang Interface
	EI User's Guide
	The El Library User's Guide
	Compiling and Linking Your Code
	Initializing the erl_interface Library
	Encoding, Decoding and Sending Erlang Terms
	Building Terms and Patterns
	Pattern Matching
	Connecting to a Distributed Erlang Node
	Using EPMD
	Sending and Receiving Erlang Messages
	Example of Sending Messages
	Example of Receiving Messages

	Remote Procedure Calls
	Using Global Names
	The Registry
	Backing Up the Registry to Mnesia
	Storing Strings and Binaries

	Reference Manual
	ei
	ei_set_compat_rel()

	ei_encode_version()

	ei_x_encode_version()

	ei_encode_long()

	ei_x_encode_long()

	ei_encode_ulong()

	ei_x_encode_ulong()

	ei_encode_longlong()

	ei_x_encode_longlong()

	ei_encode_ulonglong()

	ei_x_encode_ulonglong()

	ei_encode_bignum()

	ei_x_encode_bignum()

	ei_encode_double()

	ei_x_encode_double()

	ei_encode_boolean()

	ei_x_encode_boolean()

	ei_encode_char()

	ei_x_encode_char()

	ei_encode_string()

	ei_encode_string_len()

	ei_x_encode_string()

	ei_x_encode_string_len()

	ei_encode_atom()

	ei_encode_atom_len()

	ei_x_encode_atom()

	ei_x_encode_atom_len()

	ei_encode_atom_as()

	ei_encode_atom_len_as()

	ei_x_encode_atom_as()

	ei_x_encode_atom_len_as()

	ei_encode_binary()

	ei_x_encode_binary()

	ei_encode_pid()

	ei_x_encode_pid()

	ei_encode_fun()

	ei_x_encode_fun()

	ei_encode_port()

	ei_x_encode_port()

	ei_encode_ref()

	ei_x_encode_ref()

	ei_encode_term()

	ei_x_encode_term()

	ei_encode_trace()

	ei_x_encode_trace()

	ei_encode_tuple_header()

	ei_x_encode_tuple_header()

	ei_encode_list_header()

	ei_x_encode_list_header()

	ei_encode_empty_list()

	ei_x_encode_empty_list()

	ei_get_type()

	ei_decode_version()

	ei_decode_long()

	ei_decode_ulong()

	ei_decode_longlong()

	ei_decode_ulonglong()

	ei_decode_bignum()

	ei_decode_double()

	ei_decode_boolean()

	ei_decode_char()

	ei_decode_string()

	ei_decode_atom()

	ei_decode_atom_as()

	ei_decode_binary()

	ei_decode_fun()

	free_fun()

	ei_decode_pid()

	ei_decode_port()

	ei_decode_ref()

	ei_decode_trace()

	ei_decode_tuple_header()

	ei_decode_list_header()

	ei_decode_ei_term()

	ei_decode_term()

	ei_print_term()

	ei_s_print_term()

	ei_x_format()

	ei_x_format_wo_ver()

	ei_x_new()

	ei_x_new_with_version()

	ei_x_free()

	ei_x_append()

	ei_x_append_buf()

	ei_skip_term()

	ei_connect
	ei_connect_init()

	ei_connect_xinit()

	ei_connect()

	ei_xconnect()

	ei_connect_tmo()

	ei_xconnect_tmo()

	ei_receive()

	ei_receive_tmo()

	ei_receive_msg()

	ei_xreceive_msg()

	ei_receive_msg_tmo()

	ei_xreceive_msg_tmo()

	ei_receive_encoded()

	ei_receive_encoded_tmo()

	ei_send()

	ei_send_tmo()

	ei_send_encoded()

	ei_send_encoded_tmo()

	ei_reg_send()

	ei_reg_send_tmo()

	ei_send_reg_encoded()

	ei_send_reg_encoded_tmo()

	ei_rpc()

	ei_rpc_to()

	ei_rpc_from()

	ei_publish()

	ei_publish_tmo()

	ei_accept()

	ei_accept_tmo()

	ei_unpublish()

	ei_unpublish_tmo()

	ei_thisnodename()

	ei_thishostname()

	ei_thisalivename()

	ei_self()

	*ei_gethostbyname()

	*ei_gethostbyaddr()

	*ei_gethostbyname_r()

	*ei_gethostbyaddr_r()

	ei_get_tracelevel()

	ei_set_tracelevel()

	registry
	ei_reg_open()

	ei_reg_resize()

	ei_reg_close()

	ei_reg_setival()

	ei_reg_setfval()

	ei_reg_setsval()

	ei_reg_setpval()

	ei_reg_setval()

	ei_reg_getival()

	ei_reg_getfval()

	ei_reg_getsval()

	ei_reg_getpval()

	ei_reg_getval()

	ei_reg_markdirty()

	ei_reg_delete()

	ei_reg_stat()

	ei_reg_tabstat()

	ei_reg_dump()

	ei_reg_restore()

	ei_reg_purge()

	erl_connect
	erl_connect_init()

	erl_connect_xinit()

	erl_connect()

	erl_xconnect()

	erl_close_connection()

	erl_receive()

	erl_receive_msg()

	erl_xreceive_msg()

	erl_send()

	erl_reg_send()

	erl_rpc()

	erl_rpc_to()

	erl_rpc_from()

	erl_publish()

	erl_accept()

	erl_thiscookie()

	erl_thisnodename()

	erl_thishostname()

	erl_thisalivename()

	erl_thiscreation()

	erl_unpublish()

	*erl_gethostbyname()

	*erl_gethostbyaddr()

	*erl_gethostbyname_r()

	*erl_gethostbyaddr_r()

	erl_error
	erl_err_msg()

	erl_err_quit()

	erl_err_ret()

	erl_err_sys()

	erl_errno()

	erl_eterm
	erl_cons()

	erl_copy_term()

	erl_element()

	erl_init()

	erl_hd()

	erl_iolist_to_binary()

	erl_iolist_to_string()

	erl_iolist_length()

	erl_length()

	erl_mk_atom()

	erl_mk_binary()

	erl_mk_empty_list()

	erl_mk_estring()

	erl_mk_float()

	erl_mk_int()

	erl_mk_list()

	erl_mk_pid()

	erl_mk_port()

	erl_mk_ref()

	erl_mk_long_ref()

	erl_mk_string()

	erl_mk_tuple()

	erl_mk_uint()

	erl_mk_var()

	erl_print_term()

	erl_set_compat_rel()

	erl_size()

	erl_tl()

	erl_var_content()

	erl_format
	erl_format()

	erl_match()

	erl_global
	erl_global_names()

	erl_global_register()

	erl_global_unregister()

	erl_global_whereis()

	erl_malloc
	erl_alloc_eterm()

	erl_eterm_release()

	erl_eterm_statistics()

	erl_free_array()

	erl_free_term()

	erl_free_compound()

	erl_malloc()

	erl_free()

	erl_marshal
	erl_compare_ext()

	erl_decode()

	erl_decode_buf()

	erl_encode()

	erl_encode_buf()

	erl_ext_size()

	erl_ext_type()

	erl_peek_ext()

	erl_term_len()

	erl_call

