ERLANG

Megaco/H.248

Copyright © 2000-2019 Ericsson AB. All Rights Reserved.
Megaco/H.248 3.18.3

October 7, 2019

Copyright © 2000-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

October 7, 2019

1.1 Introduction

1 Megaco/H.248 Users Guide

The Megaco application is a framework for building applications on top of the Megaco/H.248 protocol.

1.1 Introduction

Megaco/H.248 is a protocol for control of elements in a physically decomposed multimedia gateway, enabling
separation of call control from media conversion. A Media Gateway Controller (MGC) controls one or more Media
Gateways (MG).
This version of the stack supports version 1, 2 and 3 as defined by:
e version1- RFC 3525 and H.248-1G (v10-v13)
e version 2 - draft-ietf-megaco-h248v2-04 & H.248.1 v2 Corrigendum 1 (03/2004)
e version3:
» prev3a- asdefined by TD-33 (except segments)
e prev3b - TD-33 updated to be backward compatible with v2 (except segments)
e prev3c- Asdefined by ITU H.248.1 (09/2005) (except segments)
e v3- Full version 3 asdefined by ITU H.248.1 (09/2005) (including segments)
The semantics of the protocol hasjointly been defined by two standardization bodies:
e |ETF - which calls the protocol Megaco
e |ITU - which calls the protocol H.248

1.1.1 Scope and Purpose

This manual describes the Megaco application, as a component of the Erlang/Open Telecom Platform development
environment. It is assumed that the reader is familiar with the Erlang Devel opment Environment, which is described
in a separate User's Guide.

1.1.2 Prerequisites
The following prerequisitesis required for understanding the material in the Megaco User's Guide:

e thebasics of the Megaco/H.248 protocol
» thebasics of the Abstract Syntax Notation One (ASN.1)
« familiarity with the Erlang system and Erlang programming

The application requires Erlang/OTP release R10B or later.

1.1.3 About This Manual

In addition to this introductory chapter, the Megaco User's Guide contains the following chapters:

e Chapter 2: "Architecture" describes the architecture and typical usage of the application.

* Chapter 3: "Internal form and itsencodings' describestheinternal form of Megaco/H.248 messagesand itsvarious
encodings.

e Chapter 4: "Transport mechanisms" describes how different mechanisms can be used to transport the Megaco/
H.248 messages.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 1

1.2 Architecture

» Chapter 5: "Debugging" describes tracing and debugging.

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Megaco/H.248 and about the Erlang/OTP
development system:

* version 1, RFC 3525

* oldversion 1, RFC 3015

e Version 2 Corrigendum 1

e version 2, draft-ietf-megaco-h248v2-04

* TD-33(Draft H.248.1 version 3)

+ H.248.1version3

* the ASN.1 application User's Guide

» the Megaco application Reference Manual

e Concurrent Programming in Erlang, 2nd Edition (1996), Prentice-Hall, ISBN 0-13-508301-X.

1.2 Architecture

1.2.1 Network view

Megaco is a (master/slave) protocol for control of gateway functions at the edge of the packet network. Examples
of thisis IP-PSTN trunking gateways and analog line gateways. The main function of Megaco is to allow gateway
decomposition into a call agent (call control) part (known as Media Gateway Controller, MGC) - master, and an
gateway interface part (known as Media Gateway, MG) - dave. The MG has no call control knowledge and only
handle making the connections and simple configurations.

SIP and H.323 are peer-to-peer protocols for call control (valid only for some of the protocols within H.323), or
more generally multi-media session protocols. They both operate at a different level (call control) from Megaco in a
decomposed network, and are therefor not aware of whether or not Megaco is being used underneath.

Figure 2.1: Network architecture

Megaco and peer protocols are complementary in nature and entirely compatible within the same system. At a system
level, Megaco alows for

» overall network cost and performance optimization

» protection of investment by isolation of changes at the call control layer

» freedom to geographically distribute both call function and gateway function

» adaption of legacy equipment

1.2.2 General

This Erlang/OTP application supplies a framework for building applications that needs to utilize the Megaco/H.248
protocol.

We have introduced the term "user" as a generic term for either an MG or an MGC, since most of the functionality
we support, is common for both MG's and MGC's. A (local) user may be configured in various ways and it may
establish any number of connections to its counterpart, the remote user. Once a connection has been established, the
connection is supervised and it may be used for the purpose of sending messages. N.B. according to the standard an
MG is connected to at most one MGC, while an MGC may be connected to any number of MG's.

2 | Ericsson AB. All Rights Reserved.: Megaco/H.248

href
href
href
href
href
href

1.2 Architecture

For the purpose of managing "virtual MG's", one Erlang node may host any number of MG's. In fact it may host amix
of MG'sand MGC's. Y ou may say that an Erlang node may host any number of "users’.

The protocol engine uses callback modules to handle various things:

» encoding callback modules - handles the encoding and decoding of messages. Several modules for handling
different encodings are included, such as ASN.1 BER, pretty well indented text, compact text and some others.
Others may be written by you.

» trangport callback modules - handles sending and receiving of messages. Transport modulesfor TCP/IPand UDP/
IP areincluded and others may be written by you.

e user calback modules - the actual implementation of an MG or MGC. Most of the functions are intended for
handling of a decoded transaction (request, reply, acknowledgement), but there are others that handles connect,
disconnect and errors cases.

Each connection may have its own configuration of callback modules, re-send timers, transaction id ranges etc. and
they may be re-configured on-the-fly.

Inthe API of Megaco, auser may explicitly send action requests, but generation of transaction identifiers, the encoding
and actual transport of the message to the remote user is handled automatically by the protocol engine according to
the actual connection configuration. Megaco messages are hot exposed in the API.

On the receiving side the transport module receives the message and forwards it to the protocol engine, which decodes
it and invokes user callback functions for each transaction. When a user has handled its action requests, it ssimply
returns a list of action replies (or a message error) and the protocol engine uses the encoding module and transport
module to compose and forward the message to the originating user.

The protocol stack does also handle things like automatic sending of acknowledgements, pending transactions, re-
send of messages, supervision of connections etc.

In order to provide asolution for scalableimplementations of MG'sand MGC's, a user may be distributed over several
Erlang nodes. One of the Erlang nodesis connected to the physical network interface, but messages may be sent from
other nodes and the replies are automatically forwarded back to the originating node.

1.2.3 Single node config

Here a system configuration with an MG and MGC residing in one Erlang node each is outlined:

Figure 2.2: Single node config

1.2.4 Distributed config

Inalarger system with auser (in this case an MGC) distributed over several Erlang nodes, it looks alittle bit different.
Here the encoding is performed on the originating Erlang node (1) and the binary isforwarded to the node (2) with the
physical network interface. When the potential messagereply isreceived ontheinterfaceon node(2), it isdecoded there
and then different actions will be taken for each transaction in the message. The transaction reply will be forwarded in
its decoded form to the originating node (1) while the other types of transactions will be handled locally on node (2).

Timers and re-send of messages will be handled on locally on one node, that is node(1), in order to avoid unnecessary
transfer of data between the Erlang nodes.

Figure 2.3: Distributes node config

1.2.5 Message round-trip call flow

The typical round-trip of a message can be viewed as follows. Firstly we view the call flow on the originating side:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 3

1.3 Running the stack

Figure 2.4: Message Call Flow (originating side)

Then we continue with the call flow on the destination side:

Figure 2.5: Message Call Flow (destination side)

1.3 Running the stack
1.3.1 Starting

A user may have anumber of "virtual" connectionsto other users. An MG is connected to at most one MGC, while an
MGC may be connected to any number of MG's. For each connection the user selects atransport service, an encoding
scheme and a user callback module.

An MGC must initiate its transport service in order to listen to MG's trying to connect. How the actual transport is
initiated is outside the scope of this application. However a send handle (typically a socket id or host and port) must
be provided from the transport service in order to enable us to send the message to the correct destination. We do
however not assume anything about this, from our point of view, opague handle. Hopefully it is rather small since it
will passed around the system between processes rather frequently.

A user may either be statically configured in a .config file according to the application concept of Erlang/OTP or
dynamically started with the configuration settings as arguments to megaco:start_user/2. These configuration settings
may be updated later on with megaco:update_conn_info/2.

The function megaco:connect/4 is used to tell the Megaco application about which control processit should supervise,
which MID the remote user has, which callback module it should use to send messages etc. When this "virtual"
connection is established the user may use megaco:call/3 and megaco:cast/3 in order to send messages to the other
side. Then it is up to the MG to send its first Service Change Request message after applying some clever algorithm
in order to fight the problem with startup avalanche (as discussed in the RFC).

The originating user will wait for a reply or a timeout (defined by the request_timer). When it receives the reply
thiswill optionally be acknowledged (regulated by auto_ack), and forwarded to the user. If an interim pending reply
is received, the long_request_timer will be used instead of the usual request_timer, in order to enable avoidance of
spurious re-sends of the request.

On the destination side the transport service waits for messages. Each message isforwarded to the Megaco application
viathe megaco:receive_message/4 callback function. Thetransport service may or may not provide meansfor blocking
and unblocking the reception of the incoming messages.

If a message is received before the "virtual" connection has been established, the connection will be setup
automatically. An MGC may be real open minded and dynamically decide which encoding and transport service to
use depending on how the transport layer contact is performed. For |P transports two ports are standardized, one for
textual encoding and one for binary encoding. If for example an UDP packet was received on the text port it would
be possible to decide encoding and transport on the fly.

After decoding a message various user callback functions are invoked in order to allow the user to act properly. See
the megaco_user module for more info about the callback arguments.

When the user has processed a transaction request in its callback function, the Megaco application assembles a
transaction reply, encodes it using the selected encoding modul e and sends the message back by invoking the callback
function:

e SendMod:send _message(SendHandle, ErlangBinary)

4 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.3 Running the stack

Re-send of messages, handling pending transactions, acknowledgements etc. is handled automatically by the Megaco
application but the user is free to override the default behaviour by the various configuration possibilities. See
megaco:update_user_info/2 and megaco:update_conn_info/2 about the possibilities.

When connections gets broken (that is explicitly by megaco:disconnect/2 or when its controlling process dies) a user
callback functionisinvokedin order to allow the user to re-establish the connection. Theinternal state of kept messages,
re-send timers etc. is not affected by this. A few re-sends will of course fail while the connection is down, but the
automatic re-send algorithm does not bother about this and eventually when the connection is up and running the
messages will be delivered if the timeouts are set to be long enough. The user has the option of explicitly invoking
megaco:cancel/2 to cancel all messages for a connection.

1.3.2 MGC startup call flow

In order to preparethe MGC for the reception of theinitial message, hopefully a Service Change Request, thefollowing
needs to be done:

« Start the Megaco application.

« Start the MGC user. This may either be done explicitly with megaco:start_user/2 or implicitly by providing the
-megaco users configuration parameter.

» Initiate the transport service and provide it with areceive handle obtained from megaco:user_info/2.

When the initial message arrives the transport service forwards it to the protocol engine which automatically sets up
the connection and invokes UserMod:handle_connect/2 before it invokes UserMod:handle_trans_request/3 with the
Service Change Request like this:

Figure 3.1: MGC Startup Call Flow

1.3.3 MG startup call flow

In order to prepare the MG for the sending of the initial message, hopefully a Service Change Request, the following
needs to be done:

« Start the Megaco application.

e Start the MG user. This may either be done explicitly with megaco:start_user/2 or implicitly by providing the -
megaco users configuration parameter.

» Initiate the transport service and provide it with areceive handle obtained from megaco:user_info/2.

e Setup a connection to the MGC with megaco:connect/4 and provide it with a receive handle obtained from
megaco:user_info/2.

If the MG has been provisioned with the MID of the MGC it can be given as the RemoteMid parameter to
megaco:connect/4 and the call flow will ook like this:

Figure 3.2: MG Startup Call Flow

If the MG cannot be provisioned with the MID of the MGC, the MG can use the atom 'preliminary_mid' as the
RemoteMid parameter to megaco:connect/4 and the call flow will look like this:

Figure 3.3: MG Startup Call Flow (no MID)

1.3.4 Configuring the Megaco stack

There are three kinds of configuration:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 5

1.3 Running the stack

* Userinfo - Information related to megaco users. Read/Write.
A User isan entity identified by aMID, e.g. aMGC or aMG.

Thisinformation can be retrieved using megaco: user_info.
* Connectioninfo - Information regarding connections. Read/Write.

This information can be retrieved using megaco: conn_info.
e Systeminfo - System wide information. Read only.

This information can be retrieved using megaco: system info.

1.3.5 Initial configuration

The initial configuration of the Megaco should be defined in the Erlang system configuration file. The following
configured parameters are defined for the Megaco application:

e wusers = [{Md, [user_config()]}].
Each user is represented by a tuple with the Mid of the user and a list of config parameters (each parameter is
intunatuple {Item Val ue}).

» scanner = flex | {Mdule, Function, Argunents, Mdul es}

o fl ex will result in the start of the flex scanner with default options.
» The MFA dternative makes it possible for Megaco to start and supervise a scanner written by the user (see
supervi sor: start _chi | d for an explanation of the parameters).

See a'so Configuration of text encoding module(s) for more info.

1.3.6 Changing the configuration

The configuration can be changed during runtime. This is done with the functions megaco: update user_info and
megaco: update_conn_info

1.3.7 The transaction sender
The transaction sender is a process (one per connection), which handle all transaction sending, if so configured (see
megaco: user_info and megaco: conn_info).

The purpose of the transaction sender is to accumulate transactions for a more efficient message sending. The
transactions that are accumulated are transaction request and transaction ack. For transaction ack's the benefit is
quite large, since the transactions are small and it is possible to have ranges (which means that transaction acks for
transactions 1, 2, 3 and 4 can be sent as arange 1-4 in one transaction ack, instead of four separate transactions).

There are a number of configuration parameter's that control the operation of the transaction sender. In principle, a
message with everything stored (ack's and request's) is sent from the process when:

* Whentrans_ti mer expires.

* Whentrans_ack_naxcount number of ack's has been received.

* Whentrans_req_naxcount number of requests's has been received.

* Whenthesize of al received requests exceedst r ans_r eq_maxsi ze.

e When areply transaction is sent.

* When apending transaction is sent.

When something is to be sent, everything is packed into one message, unless the trigger was a reply transaction and

the added size of the reply and all the requests is greater then t r ans_r eq_naxsi ze, in which case the stored
transactions are sent first in a separate message and the reply in another message.

6 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.4 Internal form and its encodings

When the transaction sender receives a request which is already "in storage" (indicated by the transaction id) it is
assumed to be aresend and everything stored is sent. This could happen if the values of thet r ans_t i ner and the
request _ti mer isnot properly chosen.

1.3.8 Segmentation of transaction replies

In version 3 of the megaco standard the Segmentation package was introduced. Simply, this package defines a
procedure to segment megaco messages (transaction replies) when using a transport that does not automatically do
this (e.g. UDP). See also version3.

Although it would be both pointless and counterproductive to use segmentation on a transport that already does this
(e.g. TCP), the megaco application does not check this. Instead, it is up to the user to configure this properly.
» Receiving segmented messages:
Thisis handled automatically by the megaco application. There is however one thing that need to be configured
by the user, the segment_recv_timer option.

Note that the segments are delivered to the user differently depending on which function is used to issue the
original request. When issuing the request using the megaco: cast function, the segments are delivered to the user
viathe handle_trans reply callback function one at atime, asthey arrive. But this obviously doe not work for the
megaco:call function. In this case, the segments are accumulated and then delivered al at once as the function
returns.
e Sending segmented messages:

Thisis aso handled automatically by the megaco application. First of al, segmentation is only attempted if so
configured, seethe segment_send option. Secondly, megaco relies on the ability of the used codec to encode action
replies, which isthe smallest component the megaco application handles when segmenting. Thirdly, the reply will
be segmented only if the sum of the size of the action replies (plus an arbitrary message header size) are greater
then the specified max message size (seethe max_pdu_size option). Finally, if segmentation is decided, then each
action reply will make up its own (segment) message.

1.4 Internal form and its encodings

This version of the stack is compliant with:

e Megaco/H.248 version 1 (RFC3525) updated according to Implementors Guide version 10-13.

e Megaco/H.248 version 2 as defined by draft-ietf-megaco-h248v2-04 updated according to Implementors Guide
version 10-13.

* Megaco/H.248 version 3 as defined by 1TU H.248.1 (09/2005).

1.4.1 Internal form of messages

We use the same internal form for both the binary and text encoding. Our internal form of Megaco/H.248 messages
is heavily influenced by theinternal format used by ASN.1 encoders/decoders:

e "SEQUENCE OF" isrepresented as alist.

* "CHOICE" isrepresented as atagged tuple with size 2.

e "SEQUENCE" isrepresented as arecord, defined in "megaco/include/megaco_message vi.hrl".

"OPTIONAL" isrepresented as an ordinary field in arecord which defaults to ‘asnl NOVALUE', meaning that
thefield has no value.

e "OCTET STRING" isrepresented as alist of unsigned integers.
« "ENUMERATED" isrepresented as a single atom.

e "BIT STRING" isrepresented asalist of atoms.

* "BOOLEAN" isrepresented as the atom 'true' or ‘false'.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 7

1.4 Internal form and its encodings

* "INTEGER" isrepresented as an integer.

e "IA5String" is represented as a list of integers, where each integer is the ASCII value of the corresponding
character.

* "NULL" isrepresented as the atom 'NULL".

In order to fully understand the internal form you must get hold on a ASN.1 specification for the Megaco/H.248
protocol, and apply the rules above. Please, see the documentation of the ASN.1 compiler in Erlang/OTP for more
details of the semantics in mapping between ASN.1 and the corresponding internal form.

Observe that the "Terminationld' record is not used in the internal form. It has been replaced with a megaco_term_id
record (defined in "megaco/include/megaco.hrl™).

1.4.2 The different encodings

The Megaco/H.248 standard defines both a plain text encoding and a binary encoding (ASN.1 BER) and we have
implemented encoders and decoders for both. We do in fact supply five different encoding/decoding modules.

In the text encoding, implementors have the choice of using a mix of short and long keywords. It is also possible
to add white spaces to improve readability. We use the term compact for text messages with the shortest possible
keywords and no optional white spaces, and the term pretty for a well indented text format using long keywords and
an indentation style like the text examples in the Megaco/H.248 specification).

Here follows an example of atext messageto give afeeling of the difference between the pretty and compact versions
of text messages. First the pretty, well indented version with long keywords:

MEGACO/1 [124.124.124.222]
Transaction = 9998 {

Context = - {
ServiceChange = ROOT {
Services {
Method = Restart,
ServiceChangeAddress = 55555,
Profile = ResGW/1,
Reason = "901 Cold Boot"
}
}
}

}

Then the compact version without indentation and with short keywords:

1/1 [124.124.124.222]
T=9998{C=-{SC=R0O0T{SV{MT=RS, AD=55555, PF=ResGW/1,RE="901 Cold Boot"}}}}

And the programmers view of the same message. First alist of ActionRequest records are constructed and then it is
sent with one of the send functionsin the API:

Prof = #'ServiceChangeProfile'{profileName = "resgw", version = 1},

Parm = #'ServiceChangeParm'{serviceChangeMethod = restart,
serviceChangeAddress = {portNumber, 55555},
serviceChangeReason = "901 Cold Boot",
serviceChangeProfile = Prof},

Req = #'ServiceChangeRequest'{terminationID = [?megaco root termination id],
serviceChangeParms = Parm},
Actions = [#'ActionRequest'{contextId = ?megaco null context id,
commandRequests = {serviceChangeReq, Req}}],
megaco:call(ConnHandle, Actions, Config).

8 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.4 Internal form and its encodings

And finally a print-out of the entire internal form:

{'MegacoMessage',

asnl NOVALUE,
{'Message’,
1:
{ip4Address,{'IP4Address', [124,124,124,222], asnl NOVALUE}},
{transactions,
[
{transactionRequest,
{'TransactionRequest"’,
9998,
[{'ActionRequest"',

asnl NOVALUE,
asnl NOVALUE,

{'CommandRequest"',
{serviceChangeReq,
{'ServiceChangeRequest',
[
{megaco _term id, false, ["root"]}],
{'ServiceChangeParm',
restart,
{portNumber, 55555},
asnl NOVALUE,
{'ServiceChangeProfile', "resgw", version = 1},
"901 MG Cold Boot",
asnl NOVALUE,
asnl NOVALUE,
asnl NOVALUE
)
)

}I
asnl NOVALUE,
asnl NOVALUE

The following encoding modules are provided:

megaco_pretty text encoder - encodes messages into pretty text format, decodes both pretty as well as compact
text.

megaco_compact_text_encoder - encodes messages into compact text format, decodes both pretty as well as
compact text.

megaco_binary_encoder - encode/decode ASN.1 BER messages. Thisencoder implementsthe fastest of the BER
encoders/decoders. Recommended binary codec.

megaco_ber_encoder - encode/decode ASN.1 BER messages.

megaco_per_encoder - encode/decode ASN.1 PER messages. N.B. that thisformat is not included in the Megaco
standard.

megaco_erl_dist_encoder - encodes messages into Erlangs distribution format. It is rather verbose but encoding
and decoding is blinding fast. N.B. that this format is not included in the Megaco standard.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 9

1.4 Internal form and its encodings

1.4.3 Configuration of Erlang distribution encoding module

The encoding_config of the megaco_erl_dist_encoder module may be one of these:

[1 - Encodes the messages to the standard distribution format. It is rather verbose but encoding and decoding
isblinding fast.

[megaco_conpressed] - Encodes the messages to the standard distribution format after an internal
transformation. It is less verbose, but the total time of the encoding and decoding will on the other hand be
somewhat slower (see the performance chapter for more info).

[{negaco_conpressed, Mdul e}] - Worksinthesameway asthemegaco_compressed config parameter,
only here the user provide their own compress module. This module must implement the megaco_edist_compress
behaviour.

[conpr essed] - Encodes the messages to a compressed form of the standard distribution format. It is less
verbose, but the encoding and decoding will on the other hand be slower.

1.4.4 Configuration of text encoding module(s)

When using text encoding(s), there is actually two different configs controlling what software to use:

[1 - Anempty list indicates that the erlang scanner should be used.

[{flex, port()}] -Usetheflex scanner when decoding (not optimized for SMP). Seeinitial configuration
for more info.

[{flex, ports()}] - Usetheflex scanner when decoding (optimized for SMP). See initial configuration
for more info.

The Flex scanner is a Megaco scanner written asalinked in driver (in C). There are two ways to get this working:

Let the Megaco stack start the flex scanner (load the driver).

To make this happen the megaco stack hasto be configured:

e Addthe{scanner, flex} (orsimilar) directiveto an Erlang system config file for the megaco app (see
initial configuration chapter for details).

» Retrieve the encoding-config using the system info function (withI t em = t ext _confi g).

* Update the receive handle with the encoding-config (the encodi ng_confi g field).

The benefit of thisisthat Megaco handles the starting, holding and the supervision of the driver and port.
The Megaco client (user) starts the flex scanner (load the driver).

When starting the flex scanner a port to the linked in driver is created. This port has to be owned by a process.
This process must not die. If it does the port will also terminate. Therefor:

» Create apermanent process. Make sure this processis supervised (so that if it does die, thiswill be noticed).
» Let this process start the flex scanner by calling themegaco_f 1 ex_scanner: start/ 0, 1 function.

e Retrieve the encoding-config and when initiating the negaco_recei ve_handl e, set the field
encodi ng_confi g accordingly.

» Passthenegaco_r ecei ve_handl e to the transport module.

1.4.5 Configuration of binary encoding module(s)
When using binary encoding, the structure of the termination id's needs to be specified.

[nati ve] - skipsthetransformation phase, i.e. the decoded message(s) will not be transformed into our internal
form.

[integer()] -A list containing the size (the number of bits) of each level. Example: [3, 8, 5, 8] .

10 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.4 Internal form and its encodings

i nt eger () - Number of one byte (8 bits) levels. N.B. This is currently converted into the previous config.
Example: 3 ([8, 8, 8]).

1.4.6 Handling megaco versions

Since the version 3 implemented, in this version of the Megaco application, is preliminary, it is necessary to have
a way to handle different version 3 implementations. For this reason the encoding config option { ver si on3,
ver si on3()} hasbeenintroduced. Thisoption, if present, hasto befirst in the encoding config list. Version 1 and
2 codec'signore this option, if found.

version3() -> prev3a | prev3b | prev3c | v3
e prev3a
Preliminary version 3, based on TD-33
e prevdb

Preliminary version 3, based on TD-33, but text encoding updated with the final solution for priority in
cont ext Property (which isbackward compatible with v2).

prev3c
Preliminary version 3, based on the final version of the v3-standard, but excluding segments!
v3

Full version 3. Including segmentation. This is the default version 3 variant (i.e. if aversion 3 messagesisto be
encoded/decoded and no version3 encoding config is found, then v3 is assumed).

There are two ways to handle the different megaco encoding versions. Either using dynamic ver sion detection (only
valid for for incoming messages) or by explicit version setting in the connection info.

For incoming messages:

Fo

r

Dynamic version detection

Set the protocol version in the megaco_receive_handleto dynam c (thisisthe default).

This works for those codecs that support partial decode of the version, currently text, and ber_bin
(megaco_bi nary_encoder and megaco_ber _bi n_encoder).

This way the decoder will detect which version is used and then use the proper decoder.

Explicit version

Explicitly set the actual protocol version in the megaco_receive_handle.

Start with version 1. When the initial service change has been performed and version 2 has been negotiated,
upgrade the megaco_receive_handle of the transport process (control_pid) to version 2. See megaco_tcp and
megaco_udp.

Note that if udp is used, the same transport process could be used for several connections. This could make
upgrading impossible.

For codecs that does not support partial decode of the version, currently negaco_ber _encoder,
nmegaco_per _encoder and negaco_per _bi n_encoder, dynani c will revert to version 1.

outgoing messages:
Update the connection info protocol _version.

Override protocol version when sending amessage by adding theitem{ pr ot ocol _versi on, integer()}
to the Options. See call or cast.

Note that this does not effect the messagesthat are sent autonomously by the stack. They use the protocol_version
of the connection info.

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 11

1.5 Transport mechanisms

1.4.7 Encoder callback functions

The encoder callback interface is defined by the megaco_encoder behaviour, see megaco_encoder.

1.5 Transport mechanisms
1.5.1 Callback interface

The callback interface of the transport module contains several functions. Some of which are mandatory while others
are only optional:

e send_nessage - Send amessage. Mandatory
* bl ock - Block the transport. Optional

This function is usefull for flow control.
e unbl ock - Unblock the transport. Optional

For more detail, see the megaco_transport behaviour definition.

1.5.2 Examples

The Megaco/H.248 application contains implementations for the two protocols specified by the Megaco/H.248
standard; UDP, see megaco_udp, and TCP/TPKT, see megaco_tcp.

1.6 Implementation examples

1.6.1 A simple Media Gateway Controller

In megaco/examples/smple/megaco_simple_mgc.erl there is an example of a smple MGC that listens on both text
and binary standard ports and is prepared to handle a Service Change Request message to arrive either via TCP/IP or
UDP/IP. Messages received on the text port are decoded using a text decoder and messages received on the binary
port are decoded using a binary decoder.

The Service Change Reply is encoded in the same way as the request and sent back to the MG with the same transport
mechanism UDP/IP or TCP/IP.

After thisinitial service change message the connection between the MG and MGC isfully established and supervised.
The MGC, with its four listeners, may be started with:

cd megaco/examples/simple
erl -pa ../../../megaco/ebin -s megaco filter -s megaco
megaco_simple mgc:start().

or simply 'gmake mgc'.

The -s megaco filter option to erl implies, the event tracing mechanism to be enabled and an interactive sequence
chart tool to be started. This may be quite useful in order to visualize how your MGC interacts with the Megaco/
H.248 protocol stack.

The event traces may alternatively be directed to afile for later analyze. By default the event tracing is disabled, but
it may dynamically be enabled without any need for re-compilation of the code.

12 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.7 Megaco mib

1.6.2 A simple Media Gateway

In megaco/examples/simple/megaco_simple_mg.erl there is an example of a simple MG that connects to an MGC,
sends a Service Change Request and waits synchronously for areply.

After thisinitial service change message the connection between the MG and MGC isfully established and supervised.

Assuming that the MGC is started on the local host, four different MG's, using text over TCP/IP, binary over TCP/IP,
text over UDP/IP and binary over UDP/IP may be started on the same Erlang node with:

cd megaco/examples/simple
erl -pa ../../../megaco/ebin -s megaco filter -s megaco
megaco_simple mg:start().

or simply ‘gmake mg'.

If you "only" want to start a single MG which tries to connect an MG on a host named "baidarka’, you may use one
of these functions (instead of the megaco_simple_mg:start/O above):

megaco_simple mg:start tcp text("baidarka", []).
megaco_simple mg:start tcp binary("baidarka", []1).
megaco_simple mg:start udp text("baidarka", []).
megaco_simple mg:start udp binary("baidarka", []).

The -s megaco_filter option to erl implies, the event tracing mechanism to be enabled and an interactive sequence
chart tool to be started. This may be quite useful in order to visualize how your MG interacts with the Megaco/H.248
protocol stack.

The event traces may alternatively be directed to afile for later analyze. By default the event tracing is disabled, but
it may dynamically be enabled without any need for re-compilation of the code.

1.7 Megaco mib

1.7.1 Intro

The Megaco mib is as of yet not standardized and our implementation is based on dr aft-ietf-megaco-mib-04.txt.
Almost all of the mib cannot easily be implemented by the megaco application. Instead these things should be
implemented by a user (of the megaco application).

So what part of the mib isimplemented? Basically the relevant statistic counters of the M edGwyGatewayStatsEntry.

1.7.2 Statistics counters

Theimplementation of the statistic countersislightweight. 1.e. the statistic counters are handled separately by different
entities of the application. For instance our two transport modul e(s) (see megaco_tcp and megaco_udp) maintain their
own counters and the application engine (see megaco) maintain its own counters.

This also means that if a user implement their own transport service then it has to maintain its own statistics.

1.7.3 Distribution

Each megaco application maintainsits own set of counters. So in alarge (distributed) MG/MGC it could be necessary
to collect the statistics from several nodes (each) running the megaco application (only one of them with the transport).

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 13

1.8 Performance comparison

1.8 Performance comparison

1.8.1 Comparison of encoder/decoders

The Megaco/H.248 standard defines both a plain text encoding and a binary encoding (ASN.1 BER) and we have
implemented encoders and decoders for both. We do supply abunch of different encoding/decoding modules and the
user may in fact implement their own (like our erl_dist module). Using a non-standard encoding format hasits obvious
drawbacks, but may be useful in some configurations.

We have made four different measurements of our Erlang/OTP implementation of the Megaco/H.248 protocol stack,
in order to compare our different encoders/decoders. The result of each one is summarized in the table below.

The result above are the fastest of these configurations for each codec. The figures presented are the average of all
used messages.

For comparison, also included are first, performance figures with megaco (including the measurement software) and
asnl applications hipe-compiled (second figure in the time columns, note that per bin decode had some issues so those
figures are not included), and second, performance figures where the flex driver was built asnon- r eent r ant flex
(third figure in the time columns, only valid for text codecs using the flex-scanner, figures within parenthesis).

Codec and config Size Encode Decode Total

pretty 336 20/13 75140 95/53
pretty [flex] 336 20/13/20 39/33/38 59/46/58
compact 181 17/10 62/35 79/ 45
compact [flex] 181 17/10/ 17 37/31/36 54/41/53
per bin 91 60/29 64/ - 124/ -
per bin [driver] 91 39/24 42126 81/50
per bin [native] 91 45/ 21 48/ - 93/ -
perbin o1 25/15 27118 52/33
[driver,native]

ber bin 165 32/19 38/21 70/ 40
ber bin [driver] 165 32/19 33/20 65/39
ber bin [native] 165 17/11 25/13 42124
F;rrl\?;?n ativel 165 17/11 17/12 34/23
erl_dist 875 5/5 10/10 15/15
erl_dist 405 6/4 714 13/8
[megaco_compressed]

erl_dist [compressed] 345 471 47 20/ 20 67 /67

14 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.8 Performance comparison

erl_dist

[megaco_compressed,compressed] 200 34/33 11/9 45/ 42

Table 8.1: Codec performance

1.8.2 System performance characteristics
Thisis primarily away to show the effects of using the reentrant flex scanner instead of the non-reentrant.

As can be seen from the figures above thereis no real difference between anon-reentrant and an reentrant flex scanner
when it comes to the decode times of an individual message.

Thereal differenceisinstead in system characteristics, which is best shown with the mstonel test.

When running SMP erlang on a multi-core machine the "throughput” is significantly higher. The mstonel test is an
extreme test, but it shows what is gained by using the reentrant flex-scanner.

Figure 8.1: MStonel with mstonel.sh -d flex -s 4

1.8.3 Description of encoders/decoders

In Appendix A of the Megaco/H.248 specification (RFC 3525), there are about 30 messagesthat showsarepresentative
call flow. We have also added afew extraversion 1, version 2 and version 3 messages. We have used these messages
as basis for our measurements. Our figures have not been weighted in regard to how frequent the different kinds of
messages that are sent between the media gateway and its controller.

The test compares the following encoder/decoders:

e pretty - pretty printed text. In the text encoding, the protocol stack implementors have the choice of using a mix
of short and long keywords. It isalso possible to add white spacesto improve readability. The pretty text encoding
utilizes long keywords and an indentation style like the text examplesin the Megaco/H.248 specification.

* compact - the compact text encoding uses the shortest possible keywords and no optiona white spaces.

e ber - ASN.1BER.

e per - ASN.1 PER. Not standardized as a valid Megaco/H.248 encoding, but included for the matter of
completeness as its encoding is extremely compact.

e erl_dist - Erlang's native distribution format. Not standardized as a valid Megaco/H.248 encoding, but included
as areference dueto itswell known performance characteristics. Erlang is a dynamically typed language and any
Erlang data structure may be serialized to the erl_dist format by using built-in functions.

The actual encoded messages have been collected in one directory per encoding type, containing one file per encoded

message.

Here follows an example of atext messageto give afeeling of the difference between the pretty and compact versions

of text messages. First the pretty printed, well indented version with long keywords:

Ericsson AB. All Rights Reserved.: Megaco/H.248 | 15

1.8 Performance comparison

MEGACO/1 [124.124.124.222]
Transaction = 9998 {
Context = - {
ServiceChange = ROOT {
Services {
Method = Restart,
ServiceChangeAddress = 55555,
Profile = ResGW/1,
Reason = "901 MG Cold Boot"
}
}
)
)

Then the compact text version without indentation and with short keywords:

1/1 [124.124.124.222] T=9998{
C=-{SC=R0OOT{SV{MT=RS, AD=55555, PF=ResGW/1,RE="901 MG Cold Boot"}}}}

1.8.4 Setup

The measurements has been performed on a HP xw4600 Workstation with a Intel (R) Core(TM)2 Quad CPU Q9550
@ 2.83GHz, with 4 GB memory and running Ubuntu 10.04 x86_64, kernel 2.6.32-22-generic. Software versions was
open source OTP R13B04 (megaco-3.14).

1.8.5 Summary

In our measurements we have seen that there are no significant differencesin message sizes between ASN.1 BER and
the compact text format. Some care should be taken when using the pretty text style (whichisused in all the examples
included in the protocol specification and preferred during debugging sessions) since the messages can then be quite
large. If the message sizereally is aseriousissue, our per encoder should be used, as the ASN.1 PER format is much
more compact than all the other alternatives. Its major drawback isthat it is has not been approved as avalid Megaco/
H.248 message encoding.

When it comes to pure encode/decode performance, it turns out that:

» our fastest binary encoder (ber) is about equal to our fastest text encoder (compact).
» our fastest binary decoder (ber) is about 54% (61%) faster than our fastest text decoder (compact).

If the pure encode/decode performance really is a serious issue, our erl_dist encoder could be used, as the encoding/
decoding of the erlang distribution format is much faster than al the other alternatives. Its mgjor drawback is that it
is has not been approved as a valid Megaco/H.248 message encoding.

There is no performance advantage of building (and using) a non-reentrant flex scanner over areentrant flex scanner
(if flex supports building such a scanner).

Please, observe that these performance figures are related to our implementation in Erlang/OTP. Measurements of
other implementations using other tools and techniques may of course result in other figures.

16 | Ericsson AB. All Rights Reserved.: Megaco/H.248

1.9 Testing and tools

1.9 Testing and tools
1.9.1 Tracing

We have instrumented our code in order to enable tracing. Running the application with tracing deactivated, causes
a negligible perform