ERLANG

Kernel

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.
Kernel 5.4.3.2
June 17, 2019

Copyright © 1997-2019 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

June 17, 2019

1 Reference Manual

Ericsson AB. All Rights Reserved.: Kernel | 1

kernel

kernel
Application

TheKernel application hasall the code necessary to run the Erlang runtime system: file servers, code servers, and so on.

The Kernel application is the first application started. It is mandatory in the sense that the minimal system based on
Erlang/OTP consists of Kernel and STDLIB. Kernel contains the following functional areas:

e Start, stop, supervision, configuration, and distribution of applications
* Codeloading

e Logging

» Error logging

* Globa name service

e Supervision of Erlang/OTP

* Communication with sockets

e Operating system interface

Error Logger Event Handlers

Two standard error logger event handlers are defined in the Kernel application. These are described in
error _| ogger(3).

OS Signal Event Handler

Asynchronous OS signals may be subscribed to viathe Kernel applications event manager (see OTP Design Principles
andgen_event (3)) registeredaser | _si gnal _ser ver . A default signal handler isinstalled which handlesthe
following signas:

sigusrl

The default handler will halt Erlang and produce a crashdump with slogan "Received SIGUSR1". This is
equivalentto callinger | ang: hal t (" Recei ved SI GUSR1").

sigquit
The default handler will halt Erlang immediately. Thisisequivalenttocallinger | ang: hal t ().
sigterm

The default handler will terminate Erlang normally. Thisis equivalent to callingi ni t : st op() .

Events
Any event handler addedto er | _si gnal _ser ver must handle the following events.
si ghup
Hangup detected on controlling terminal or death of controlling process
sigquit
Quit from keyboard
si gabrt
Abort signal from abort

2 | Ericsson AB. All Rights Reserved.: Kernel

kernel

sigalrm
Timer signal from alarm
sigterm
Termination signal
sigusrl
User-defined signal 1
si gusr?2
User-defined signal 2
sigchl d
Child process stopped or terminated
si gstop
Stop process
sigtstp
Stop typed at terminal
Setting OS signals are described in os: set _si gnal / 2.

Configuration

The following configuration parameters are defined for the Kernel application. For more information about
configuration parameters, seefileapp(4) .

browser_cnmd = string() | {MF, A

When pressing the Help button in a tool such as Debugger, the help text (an HTML file Fi | e) is by default
displayed in a Netscape browser, which is required to be operational. This parameter can be used to change the
command for how to display the help text if another browser than Netscape is preferred, or if another platform
than Unix or Windows is used.

If set to a string Command, the command " Command Fi | e" isevaluated using os: cnd/ 1.

If set to amodule-function-argstuple, { M F, A} , thecall appl y(M F, [Fi | e| A]) isevaluated.
distributed = [Distrib]

Specifieswhich applicationsthat are distributed and on which nodesthey are allowed to execute. In thisparameter:

e Distrib = {App, Nodes} | {App, Ti ne, Nodes}

* App = aton()
« Time = integer()>0
e Nodes = [node() | {node(),...,node()}]

The parameter isdescribed inappl i cati on: | oad/ 2.
di st _aut o_connect = Val ue

Specifies when nodes are automatically connected. If this parameter is not specified, a node is aways
automatically connected, for example, when a message is to be sent to that node. Val ue is one of:

never

Connectionsare never automatically established, they must be explicitly connected. Seenet _ker nel (3).

Ericsson AB. All Rights Reserved.: Kernel | 3

kernel

once

Connections are established automatically, but only once per node. If a node goes down, it must thereafter
be explicitly connected. Seenet _ker nel (3).

perm ssions = [Perni
Specifies the default permission for applications when they are started. In this parameter:
e Perm = { Appl Nane, Bool }

 Appl Nane = atom()
e Bool = bool ean()

Permissions are described in appl i cati on: permi t/ 2.
error _| ogger = Val ue
Val ue isoneof:
tty
Installs the standard event handler, which prints error reportsto st di 0. Thisisthe default option.
{file, FileNane}

Installs the standard event handler, which prints error reports to file Fi | eName, where Fi | eNane isa
string. Thefile is opened with encoding UTF-8.

fal se

No standard event handler is installed, but the initial, primitive event handler is kept, printing raw event
messagestotty.
si | ent
Error logging isturned off.
error_| ogger format_depth = Depth
Can be used to limit the size of the formatted output from the error logger event handlers.

This configuration parameter was introduced in OTP 18.1 and is experimental . Based on user feedback, it can
be changed or improved in future releases, for example, to gain better control over how to limit the size of the
formatted output. We have no plans to remove this new feature entirely, unlessiit turns out to be useless.

Dept h is a positive integer representing the maximum depth to which terms are printed by the error logger
event handlersincluded in OTP. This configuration parameter is used by the two event handlers defined by the
Kernel application and the two event handlersin the SASL application. (If you have implemented your own error
handlers, this configuration parameter has no effect on them.)

Dept h is used as follows. Format strings passed to the event handlers are rewritten. The format controls ~p
and ~w are replaced with ~P and ~W respectively, and Dept h is used as the depth parameter. For details, see
io:format/2inSTDLIB.

A reasonable starting value for Dept h is 30. We recommend to test crashing various processes in your
application, examine the logs from the crashes, and then increase or decrease the value.

4 | Ericsson AB. All Rights Reserved.: Kernel

kernel

gl obal _groups = [G oupTupl €]
Defines global groups, see gl obal _gr oup(3) . Inthis parameter:
e GoupTuple = {GoupNane, [Node]} | {GoupName, PublishType, [Node]}
e GoupName = atom()
e PublishType = normal | hidden
* Node = node()
i net_default_connect _options = [{Opt, Val}]

Specifies default options for connect sockets, seei net (3) .
i net _default_listen_options = [{Opt, Val}]

Specifies default optionsfor | i st en (and accept) sockets, seei net (3) .
{inet_dist_use_interface, ip_address()}

If the host of an Erlang node has many network interfaces, this parameter specifies which one to listen on. For
the type definition of i p_addr ess() , seei net (3).

{inet _dist listen mn, First} and{inet _dist _|listen_nmax, Last}
Definesthe Fi r st . . Last port range for the listener socket of a distributed Erlang node.
{inet_dist_listen_options, Opts}

Defines alist of extra socket options to be used when opening the listening socket for a distributed Erlang node.
Seegen_tcp:listen/2.

{inet_dist_connect_options, Opts}

Defines a list of extra socket options to be used when connecting to other distributed Erlang nodes. See
gen_t cp: connect/ 4.

i net_parse_error_log = silent

If set, no error _| ogger messages are generated when erroneous lines are found and skipped in the various
Inet configuration files.

inetrc = Fil enane

The name (string) of an Inet user configuration file. For details, see section | net Confi gurati on inthe
ERTS User's Guide.
net _setuptime = SetupTi ne

Set upTi me must be a positive integer or floating point number, and is interpreted as the maximum allowed
time for each network operation during connection setup to another Erlang node. The maximum allowed value
is120. If higher values are specified, 120 isused. Default is 7 seconds if the variable is not specified, or if the
valueisincorrect (for example, not a number).

Notice that this value does not limit the total connection setup time, but rather each individual network operation
during the connection setup and handshake.

net _ticktime = TickTinme

Specifiesthe net _ker nel tick time. Ti ckTi ne is specified in seconds. Once every Ti ckTi me/ 4 second,
all connected nodes are ticked (if anything else is written to a node). If nothing is received from another node
within thelast four tick times, that node is considered to be down. This ensuresthat nodesthat are not responding,
for reasons such as hardware errors, are considered to be down.

Thetime T, in which anode that is not responding is detected, iscalculated asM nT < T < MaxT, where:

Ericsson AB. All Rights Reserved.: Kernel | 5

kernel

MinT
MaxT

TickTime - TickTime / 4
TickTime + TickTime / 4

Ti ckTi me defaultsto 60 (seconds). Thus, 45 < T < 75 seconds.
Notice that all communicating nodes are to have the same Ti ckTi me value specified.
Normally, aterminating node is detected immediately.

shutdown_timeout = integer() | infinity

Specifiesthetimeappl i cati on_contr ol | er waitsfor an application to terminate during node shutdown.
If the timer expires, appl i cati on_control | er brutaly killsappl i cati on_mast er of the hanging
application. If this parameter is undefined, it defaultstoi nfinity.

sync_nodes_mandat ory = [NodeNane]

Specifies which other nodes that must be alive for this node to start properly. If some node in the list does not
start within the specified time, this node does not start either. If this parameter is undefined, it defaultsto[] .

sync_nodes_optional = [NodeNane]

Specifies which other nodesthat can be alivefor this node to start properly. If some nodein thislist does not start
within the specified time, this node starts anyway. If this parameter is undefined, it defaultsto the empty list.

sync_nodes_tinmeout = integer() | infinity

Specifies the time (in milliseconds) that this node waits for the mandatory and optional nodes to start. If this
parameter is undefined, no node synchronization is performed. Thisoption ensuresthat gl obal issynchronized.

start_dist_ac = true | false

Starts the di st _ac server if the parameter ist r ue. This parameter is to be set to t r ue for systems using
distributed applications.

Defaultstof al se. If this parameter is undefined, the server is started if parameter di st ri but ed isset.
start_boot _server = true | fal se

Startstheboot _ser ver if the parameterist r ue (seeer| _boot _server (3)). Thisparameter isto be set
tot r ue in an embedded system using this service.

Defaultstof al se.
boot server_slaves = [Sl avel P

If configuration parameter start boot server is true, this parameter can be used to initialize
boot server withalist of slave IP addresses:

Slavel P = string() | atom| {integer(),integer(),integer(),integer()},
where0 <= integer() <=255.
Examples of SI avel P in atom, string, and tuple form:
' 150. 236. 16. 70', "150, 236, 16, 70", {150, 236, 16, 70}.
Defaultsto[] .
start _disk log = true | false

Startsthe di sk_| og_ser ver if the parameter ist r ue (seedi sk_I og(3)). This parameter isto be set to
t r ue in an embedded system using this service.

Defaultstof al se.

6 | Ericsson AB. All Rights Reserved.: Kernel

kernel

start_pg2 =true | false

Startsthepg?2 server (seepg?2(3)) if the parameter ist r ue. Thisparameteristobesettot r ue in an embedded
system that uses this service.

Defaultstof al se.
start_timer = true | false

Startsthet i mer _ser ver if the parameter ist r ue (seet i ner (3)). Thisparameter istobesettotrue in
an embedded system using this service.

Defaultstof al se.
shel |l _history = enabled | disabled

Specifies whether shell history should be logged to disk between usages of er | .
shel | _history_drop = [string()]

Specific log lines that should not be persisted. For example["q().", "init:stop()."] will alow to
ignore commands that shut the node down. Defaultsto[] .

shell _history file bytes = integer()
how many bytes the shell should remember. By default, the valueis set to 512kb, and the minimal value is 50kb.
shel | _history_path = string()

Specifies where the shell history files will be stored. defaults to the user's cache directory as returned by
fil enane: basedi r (user_cache, "erlang-history").

shut down_func = {Mdd, Func}
Where:
e« Md = atom()
e Func = atom()
Sets afunction that appl i cati on_control | er calswhen it starts to terminate. The function is called as

Mbd: Func(Reason) ,whereReason istheterminatereasonfor appl i cati on_control | er,andit must
return as soon as possible for appl i cati on_control | er toterminate properly.

source_search_rules = [DirRule] | [SuffixRule]
Where:
e DirRule = {ObjDirSuffix,Srchirsuffix}
o SuffixRule = {QbjSuffix,SrcSuffix,[DrRule]}
e hjDirsuffix = string()
e SrcDirSuffix string()
e ObjSuffix = string()
e SrcSuffix = string()

Specifiesalist of rulesfor useby filelib:find_file/2 filelib:find_source/2Ifthisissetto
some other value than the empty list, it replaces the default rules. Rules can be simple pairs of directory suffixes,
suchas{"ebin", "src"},whichareusedbyfilelib:find_file/2,ortriplesspecifying separate
directory suffix rules depending on file name extensions, for example[{ " . beant, ".erl", [{"ebin",
"src"}]},whichareusedbyfil elib:find_source/2.Bothkindsof rulescan be mixed in thelist.

The interpretation of Cbj Di r Suf fi x and SrcDi r Suf fi x is as follows: if the end of the directory name
where an object islocated matches Obj Di r Suf f i x, then the name created by replacing Cbj Di r Suf f i x with
SrcDir Suffixisexpanded by caling filelib:wi | dcard/ 1, andthefirst regular file found among the
matchesis the sourcefile.

Ericsson AB. All Rights Reserved.: Kernel | 7

kernel

See Also

app(4), application(3), code(3), disk log(3), erl_boot _server(3), erl _ddll(3),
error_logger(3), file(3), global(3), global _group(3), heart(3), inet(3),
net _kernel (3),0s(3),pg2(3),rpc(3),seq _trace(3),user(3),timer(3)

8 | Ericsson AB. All Rights Reserved.: Kernel

application

application

Erlang module

In OTP, application denotes a component implementing some specific functionality, that can be started and stopped
asaunit, and that can be reused in other systems. This module interacts with application controller, aprocess started
at every Erlang runtime system. This module contains functions for controlling applications (for example, starting and
stopping applications), and functionsto accessinformation about applications (for exampl e, configuration parameters).

An application is defined by an application specification. The specification is normally located in an application
resource file named Appl i cati on. app, where Appl i cat i on is the application name. For details about the
application specification, see app(4) .

Thismodule can a so be viewed as a behaviour for an application implemented according to the OTP design principles
asasupervision tree. The definition of how to start and stop thetreeisto belocated in an application callback module,
exporting a predefined set of functions.

For details about applications and behaviours, see OTP Design Principles.

Data Types
start type() =
normal |
{takeover, Node :: node()} |
{failover, Node :: node()}
restart type() = permanent | transient | temporary

tuple of(T)
A tuple where the elements are of type T.

Exports

ensure all started(Application) -> {ok, Started} | {error, Reason}

ensure all started(Application, Type) ->
{ok, Started} | {error, Reason}

Types:
Application = atom()
Type = restart_type()
Started = [atom()]
Reason = term()

Equivalent to calling st art / 1, 2 repeatedly on al dependencies that are not yet started for an application.

Returns { ok, AppNames} for asuccessful start or for an aready started application (which is, however, omitted
from the AppNarnes list).

Thefunctionreports{ error, {AppNane, Reason}} for errors, where Reason isany possible reason returned
by start/ 1, 2 when starting a specific dependency.

If an error occurs, the applications started by the function are stopped to bring the set of running applications back
toitsinitial state.

Ericsson AB. All Rights Reserved.: Kernel | 9

application

ensure started(Application) -> ok | {error, Reason}
ensure started(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart_type()

Reason = term()
Equivalenttost art/ 1, 2 except it returns ok for already started applications.

get all env() -> Env
get all env(Application) -> Env
Types:
Application = atom()
Env = [{Par :: atom(), Val :: term()}]

Returns the configuration parameters and their values for Appl i cat i on. If the argument is omitted, it defaults to
the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not belong to any application, the
functionreturns|] .

get all key() -> []1 | {ok, Keys}
get all key(Application) -> undefined | Keys

Types:
Application = atom()
Keys = {ok, [{Key :: atom(), Val :: term()}, ...]}

Returns the application specification keys and their values for Appl i cat i on. If the argument is omitted, it defaults
to the application of the calling process.

If the specified application is not loaded, the function returnsundef i ned. If the process executing the call does not
belong to any application, the function returns|] .

get application() -> undefined | {ok, Application}
get application(PidOrModule) -> undefined | {ok, Application}

Types:
PidOrModule = (Pid :: pid()) | (Module :: module())
Application = atom()

Returns the name of the application to which the process Pi d or the module Mbdul e belongs. Providing no argument
isthesameascallingget _application(self()).

If the specified process does not belong to any application, or if the specified process or module does not exist, the
function returnsundef i ned.

get env(Par) -> undefined | {ok, Val}

get env(Application, Par) -> undefined | {ok, Val}
Types:

10 | Ericsson AB. All Rights Reserved.: Kernel

application

Application = Par = atom()
Val = term()

Returns the value of configuration parameter Par for Appl i cati on. If the application argument is omitted, it
defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

e The specified application is not loaded.
* Theconfiguration parameter does not exist.
» The process executing the call does not belong to any application.

get env(Application, Par, Def) -> Val
Types:

Application = Par = atom()

Def = Val = term()

Workslikeget _env/ 2 but returns value Def when configuration parameter Par does not exist.

get key(Key) -> undefined | {ok, Val}
get key(Application, Key) -> undefined | {ok, Val}

Types:
Application = Key = atom()
Val = term()

Returnsthe value of the application specification key Key for Appl i cat i on. If the application argument is omitted,
it defaults to the application of the calling process.

Returnsundef i ned if any of the following applies:

* The specified application is not loaded.
e The specification key does not exist.
» The process executing the call does not belong to any application.

load(AppDescr) -> ok | {error, Reason}

load (AppDescr, Distributed) -> ok | {error, Reason}

Types.
AppDescr = Application | (AppSpec :: application_spec())
Application = atom()

Distributed =

{Application, Nodes} | {Application, Time, Nodes} | default
Nodes = [node() | tuple_of (node())]
Time = integer() >=1
Reason = term()
application spec() =

{application,

Application :: atom(),

AppSpecKeys :: [application_opt()]}
application opt() =

{description, Description :: string()} |

Ericsson AB. All Rights Reserved.: Kernel | 11

application

{vsn, Vsn :: string()} |
{id, Id :: string()} |
{modules, [Module :: module()]} |
{registered, Names :: [Name :: atom()1} |
{applications, [Application :: atom()1} |
{included applications, [Application :: atom()]} |
{env, [{Par :: atom(), Val :: term()}1} |
{start phases,
[{Phase :: atom(), PhaseArgs :: term()}] | undefined} |
{maxT, MaxT :: timeout()} |
{maxP, MaxP :: integer() >= 1 | infinity} |
{mod, Start :: {Module :: module(), StartArgs :: term()}}

Loads the application specification for an application into the application controller. It also loads the application
specifications for any included applications. Notice that the function does not load the Erlang object code.

The application can be specified by itsname Appl i cat i on. Inthiscase, the application controller searchesthe code
path for the application resource file Appl i cat i on. app and loads the specification it contains.

The application specification can also be specified directly as a tuple AppSpec, having the format and contents as
describedinapp(4) .

IfDi stributed == {Application,[Tine,] Nodes}, the application becomes distributed. The argument
overrides the value for the application in the Kernel configuration parameter di st ri but ed. Appl i cati on must
be the application name (same as in the first argument). If a node crashes and Ti ne is specified, the application
controller waits for Ti me milliseconds before attempting to restart the application on another node. If Ti ne is not
specified, it defaultsto O and the application is restarted immediately.

Nodes isalist of hode names where the application can run, in priority from left to right. Node names can be grouped
using tuplesto indicate that they have the same priority.

Example:

Nodes = [cpl@cave, {cp2@cave, cp3@cave}]
This means that the application is preferably to be started at cpl@ave. If cpl@ave is down, the application is
to be started at cp2@ave or cp3@ave.

IfDi stributed == def aul t,thevauefortheapplicationintheKernel configuration parameter di st ri but ed
isused.

loaded applications() -> [{Application, Description, Vsn}]
Types:

Application atom()

Description = Vsn = string()

Returns alist with information about the applications, and included applications, which areloaded using| oad/ 1, 2.
Appl i cati on isthe application name. Descri pt i on and Vsn are the values of their descri pti on andvsn
application specification keys, respectively.

permit (Application, Permission) -> ok | {error, Reason}
Types:

12 | Ericsson AB. All Rights Reserved.: Kernel

application

Application = atom()
Permission = boolean()
Reason = term()

Changes the permission for Appl i cati on to run at the current node. The application must be loaded using
| oad/ 1, 2 for the function to have effect.

If the permission of aloaded, but not started, application isset to f al se, st art returns ok but the application is
not started until the permissionissettot r ue.

If the permission of a running application is set to f al se, the application is stopped. If the permission later is set
totrue, itisrestarted.

If the application isdistributed, setting the permissiontof al se meansthat the application will be started at, or moved
to, another node according to how its distribution is configured (seel oad/ 2).

Thefunction does not return until the application is started, stopped, or successfully moved to another node. However,
in some caseswhere permissionissettot r ue, the function returns ok even though the application isnot started. This
is true when an application cannot start because of dependencies to other applications that are not yet started. When
they are started, Appl i cat i on isstarted aswell.

By default, all applications are loaded with permissiont r ue on all nodes. The permission can be configured using
the Kernel configuration parameter per i ssi ons.

set env(Application, Par, Val) -> ok
set _env(Application, Par, Val, Opts) -> ok

Types:
Application = Par = atom()
Val = term()

Opts = [{timeout, timeout()} | {persistent, boolean()}]
Setsthe value of configuration parameter Par for Appl i cati on.

set _env/ 4 usesthestandardgen_ser ver time-out value (5000 ms). Optiont i meout can be specified if another
time-out value is useful, for example, in situations where the application controller is heavily loaded.

If set _env/ 4 is caled before the application is loaded, the application environment values specified in file
Appl i cati on. app override the ones previously set. Thisis also true for application reloads.

Option per si st ent canbesettot r ue to guarantee that parameters set with set _env/ 4 are not overridden by
those defined in the application resource file on load. This means that persistent values will stick after the application
isloaded and also on application reload.

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

start(Application) -> ok | {error, Reason}
start(Application, Type) -> ok | {error, Reason}
Types.

Ericsson AB. All Rights Reserved.: Kernel | 13

application

Application = atom()
Type = restart _type()
Reason = term()
Starts Appl i cati on. If it is not loaded, the application controller first loads it using | oad/ 1. It ensures that

any included applications are loaded, but does not start them. That is assumed to be taken care of in the code for
Appl i cation.

The application controller checks the value of the application specification key appl i cati ons, to ensure that all
applications needed to be started before this application arerunning. Otherwise, { er r or, { not _st art ed, App}}
isreturned, where App is the name of the missing application.

The application controller then creates an application master for the application. The application master isthe group
leader of all the processes in the application. The application master starts the application by calling the application
callback function Modul e: st ar t / 2 asdefined by the application specification key nod.

Argument Type specifies the type of the application. If omitted, it defaultstot enpor ary.
* If apermanent application terminates, all other applications and the entire Erlang node are also terminated.

e « [fatransient application terminateswith Reason == nor mal , thisisreported but no other applications
are terminated.
« |If atransient application terminates abnormally, all other applications and the entire Erlang node are also
terminated.

» If atemporary application terminates, this is reported but no other applications are terminated.

Notice that an application can always be stopped explicitly by caling st op/ 1. Regardless of the type of the
application, no other applications are affected.

Notice also that the transient type is of little practical use, because when a supervision tree terminates, the reason is
set to shut down, not nor mal .

start_type() -> StartType | undefined | local
Types:
StartType = start_type()

This function is intended to be called by a process belonging to an application, when the application is started, to
determine the start type, whichis St art Type or | ocal .

For adescription of St art Type, seeModul e: start/ 2.

| ocal isreturned if only parts of the application are restarted (by a supervisor), or if the function is called outside
astartup.

If the process executing the call does not belong to any application, the function returnsundef i ned.

stop(Application) -> ok | {error, Reason}
Types:
Application = atom()
Reason = term()
StopsAppl i cat i on. Theapplication master callsModul e: prep_st op/ 1, if such afunction isdefined, and then
tellsthetop supervisor of the application to shut down (seesuper vi sor (3)). Thismeansthat the entire supervision

tree, including included applications, is terminated in reversed start order. After the shutdown, the application master
calsModul e: st op/ 1. Modul e isthe callback module as defined by the application specification key nmod.

Last, the application master terminates. Notice that all processes with the application master as group leader, that is,
processes spawned from a process bel onging to the application, are also terminated.

14 | Ericsson AB. All Rights Reserved.: Kernel

application

When stopped, the application is still loaded.

To stop adistributed application, st op/ 1 must be called on all nodeswhere it can execute (that is, on all nodeswhere
it has been started). The call to st op/ 1 on the node where the application currently executes stopsits execution. The
application is not moved between nodes, as st op/ 1 is called on the node where the application currently executes
beforest op/ 1 is called on the other nodes.

takeover(Application, Type) -> ok | {error, Reason}
Types:

Application = atom()

Type = restart _type()

Reason = term()
Takes over the distributed application Appl i cati on, which executes at another node Node. At the current
node, the application isrestarted by calling Modul e: st art ({t akeover, Node}, St art Args) . Modul e and
St art Ar gs areretrieved from the loaded application specification. The application at the other node is not stopped

until the startup is completed, that is, when Modul e: st art/ 2 and any callsto Modul e: st art _phase/ 3 have
returned.

Thus, two instances of the application run simultaneously during the takeover, so that data can be transferred from the
old to the new instance. If thisis not an acceptable behavior, parts of the old instance can be shut down when the new
instance is started. However, the application cannot be stopped entirely, at least the top supervisor must remain alive.

For adescription of Type, seestart/ 1, 2.

unload(Application) -> ok | {error, Reason}
Types.

Application = atom()

Reason = term()

Unloads the application specification for Appli cati on from the application controller. It aso unloads the
application specificationsfor any included applications. Notice that the function does not purge the Erlang object code.

unset env(Application, Par) -> ok
unset env(Application, Par, Opts) -> ok
Types.
Application = Par = atom()
Opts = [{timeout, timeout()} | {persistent, boolean()}]
Removes the configuration parameter Par and itsvalue for Appl i cat i on.

unset _env/ 2 uses the standard gen_ser ver time-out value (5000 ms). Option t i meout can be specified if
another time-out value is useful, for example, in situations where the application controller is heavily loaded.

unset _env/ 3 aso alows the persistent option to be passed (seeset _env/ 4).

Use this function only if you know what you are doing, that is, on your own applications. It is very application-
dependent and configuration parameter-dependent when and how often thevalueisread by the application. Careless
use of this function can put the application in aweird, inconsistent, and malfunctioning state.

Ericsson AB. All Rights Reserved.: Kernel | 15

application

which applications() -> [{Application, Description, Vsn}]

which applications(Timeout) -> [{Application, Description, Vsn}]

Types:
Timeout = timeout(
Application = atom
Description = Vsn

)
string()

I~ ~

Returns a list with information about the applications that are currently running. Appl i cat i on isthe application
name. Descri ption and Vsn are the values of their descri pti on and vsn application specification keys,
respectively.

whi ch_appl i cati ons/ 0 usesthe standard gen_ser ver time-out value (5000 ms). A Ti meout argument can
be specified if another time-out value is useful, for example, in situations where the application controller is heavily
loaded.

Callback Module

The following functions are to be exported from an appl i cat i on callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error,
Reason}

Types:
Start Type = start_type()
StartArgs = tern()
Pid = pid()

State = term()

This function is called whenever an application is started using start/ 1, 2, and is to start the processes of the
application. If the application is structured according to the OTP design principles as a supervision tree, this means
starting the top supervisor of the tree.

St ar t Type definesthe type of start:

* normal ifitisanormal startup.

* nornal asoif theapplication is distributed and started at the current node because of afailover from another
node, and the application specificationkey st art _phases == undefi ned.

« {takeover, Node} if the application is distributed and started at the current node because of a takeover from
Node, either becauset akeover / 2 has been called or because the current node has higher priority than Node.

o« {failover, Node} if theapplication is distributed and started at the current node because of afailover from
Node, and the application specification key st art _phases /= undefi ned.
Start Args isthe St ar t Ar gs argument defined by the application specification key nod.

The function is to return { ok, Pi d} or {ok, Pi d, St at e}, where Pi d is the pid of the top supervisor and
St at e is any term. If omitted, St at e defaults to [] . If the application is stopped later, St at e is passed to
Modul e: prep_stop/ 1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}

Types.
Phase = aton()

16 | Ericsson AB. All Rights Reserved.: Kernel

application

Start Type = start_type()
PhaseArgs = term))
Pid = pid()

State = state()

Starts an application with included applications, when synchronization is needed between processes in the different
applications during startup.

The start phases are defined by the application specificationkey st art _phases == [{Phase, PhaseArgs}].
For included applications, the set of phases must be a subset of the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary application) for the primary application and all
included applications, for which the start phase is defined.

For adescription of St art Type, see Modul e: start/ 2.

Module:prep stop(State) -> NewState
Types:
State = NewState = term()
Thisfunctioniscalled when an application isabout to be stopped, before shutting down the processes of the application.

St at e isthe state returned from Modul e: start/ 2, or [] if no state was returned. NewSt at e is any term and
ispassed to Mbdul e: st op/ 1.

Thefunctionisoptional. If it isnot defined, the processes are terminated and then Modul e: st op(St at e) iscalled.

Module:stop(State)
Types.
State = term)

Thisfunction is called whenever an application has stopped. It isintended to be the opposite of Mbdul e: start/ 2
and isto do any necessary cleaning up. Thereturn value isignored.

St at e isthe return value of Modul e: prep_st op/ 1, if such afunction exists. Otherwise St at e is taken from
thereturn value of Mbdul e: start/ 2.

Module:config change(Changed, New, Removed) -> ok
Types.

Changed = [{Par, Val }]

New = [{Par, Val }]

Removed = [Par]

Par = atom()

Val = term()

Thisfunction is called by an application after a code replacement, if the configuration parameters have changed.
Changed isalist of parameter-value tuplesincluding all configuration parameters with changed values.
Newisalist of parameter-value tuplesincluding all added configuration parameters.

Renmoved isalist of all removed parameters.

See Also
OTP Design Principles, kernel(6), app(4)

Ericsson AB. All Rights Reserved.: Kernel | 17

auth

auth

Erlang module

This module is deprecated. For a description of the Magic Cookie system, refer to Distributed Erlang in the Erlang
Reference Manual.

Data Types

cookie() = atom()

Exports

cookie() -> Cookie
Types.
Cookie = cooki e()
Useerl ang: get _cooki e() in ERTSinstead.

cookie(TheCookie) -> true

Types.
TheCookie = Cookie | [Cookie]
The cookie can also be specified as a list with a single atom element.
Cookie = cooki e()

Useerl ang: set _cooki e(node(), Cookie) in ERTSinstead.

is_auth(Node) -> yes | no
Types:
Node = node()

Returnsyes if communication with Node is authorized. Notice that a connection to Node is established in this case.
Returnsno if Node does not exist or communication is not authorized (it has another cookie than aut h thinksit has).

Usenet _adm pi ng(Node) instead.

node cookie([Node, Cookiel]) -> yes | no
Types.

Node = node()

Cooki e = cooki e()

Equivalent tonode_cooki e(Node, Cooki e) .

node cookie(Node, Cookie) -> yes | no
Types:

Node = node()

Cookie = cookie()

Sets the magic cookie of Node to Cooki e and verifies the status of the authorization. Equivalent to calling
erl ang: set _cooki e(Node, Cooki e),followed by aut h: i s_aut h(Node) .

18 | Ericsson AB. All Rights Reserved.: Kernel

code

code

Erlang module

This module contains the interface to the Erlang code server, which deals with the loading of compiled code into a
running Erlang runtime system.

The runtime system can be started in embedded or inter active mode. Which one is decided by command-line flag
- node:

% erl -mode interactive

The modes are as follows:

* Inembedded mode, all codeisloaded during system startup according to the boot script. (Code can a so be loaded
later by explicitly ordering the code server to do so).

e In interactive mode, which is default, only some code is loaded during system startup, basically the modules
needed by the runtime system. Other code is dynamically |oaded when first referenced. When acall to afunction
inacertain moduleis made, and the moduleis not loaded, the code server searchesfor and triesto load the module.

To prevent accidentally rel oading of modules affecting the Erlang runtime system, directoriesker nel , st dl i b, and
conpi | er areconsidered sticky. This means that the system issues a warning and rejects the request if a user tries
to reload amodule residing in any of them. The feature can be disabled by using command-line flag - nost i ck.

Code Path

In interactive mode, the code server maintains a search path, usually called the code path, consisting of a list of
directories, which it searches sequentially when trying to load a module.

Initially, the code path consists of the current working directory and all Erlang object code directories under library
directory $OTPROOT/ | i b, where $OTPROOT is the installation directory of Erlang/OTP, code: root _dir ().
Directoriescan benamed Nane[- VVsn] and the code server, by default, choosesthe directory with the highest version
number among those having the same Nane. Suffix - Vsn is optional. If an ebi n directory exists under Nane| -
Vsn] , thisdirectory is added to the code path.

Environment variable ERL_ LI BS (defined in the operating system) can be used to define more library directories to
be handled in the same way as the standard OTP library directory described above, except that directories without an
ebi n directory are ignored.

All application directories found in the additional directories appears before the standard OTP applications, except for
the Kernel and STDLIB applications, which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the same name in OTP, except for modules
in Kernel and STDLIB.

Environment variable ERL_ LI BS (if defined) is to contain a colon-separated (for Unix-like systems) or semicolon-
separated (for Windows) list of additional libraries.

Example:
On aUnix-like system, ERL_ LI BS can be set to the following

/usr/local/jungerl:/home/some user/my erlang lib

On Windows, use semi-colon as separator.

Ericsson AB. All Rights Reserved.: Kernel | 19

code

Loading of Code From Archive Files

The support for loading code from archive files is experimental. The purpose of releasing it before it is ready is
to obtain early feedback. The file format, semantics, interfaces, and so on, can be changed in a future release. The
functionl i b_dir/ 2 andflag- code_pat h_choi ce areaso experimental.

The Erlang archives are ZI P fileswith extension . ez. Erlang archives can also beenclosedinescri pt fileswhose
file extension is arbitrary.

Erlang archive files can contain entire Erlang applications or parts of applications. The structure in an archive file
is the same as the directory structure for an application. If you, for example, create an archive of esi a- 4. 4. 7,
the archive file must be named mesi a- 4. 4. 7. ez and it must contain atop directory named resi a- 4. 4. 7. If
the version part of the name is omitted, it must also be omitted in the archive. That is, amrmesi a. ez archive must
contain ammesi a top directory.

An archivefile for an application can, for example, be created like this:

zip:create("mnesia-4.4.7.ez",
["mnesia-4.4.7"],
[{cwd, code:lib dir()},
{compress, all},
{uncompress, [".beam",".app"1}]1).

Any file in the archive can be compressed, but to speed up the access of frequently read files, it can be a good idea
to store beamand app files uncompressed in the archive.

Normally the top directory of an application islocated in library directory $OTPROOT/ | i b or in adirectory referred
to by environment variable ERL_ LI BS. At startup, when theinitial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebi n directories in archives to the code path. The code path
then contains paths to directories that look like $OTPROOT/ | i b/ mesi a. ez/ mesi a/ ebi n or $OTPROOT/
i b/ Mmesia-4.4.7.ez/ mesia-4.4.7/ebin.

The code server uses module er| _prim | oader in ERTS (possibly through erl boot server) to read
code files from archives. However, the functionsin er| _pri m | oader can aso be used by other applications
to read files from archives. For example, the call erl _prim |l oader:list_dir("/otp/root/lib/
mesi a-4. 4. 7. ez/ mesi a- 4. 4. 7/ exanpl es/ bench) " would list the contents of a directory inside an
archive. Seeer| _prim.| oader(3).

An application archive file and aregular application directory can coexist. This can be useful when it is needed to have
parts of the application asregular files. A typical caseisthepr i v directory, which must reside as aregular directory
tolink in drivers dynamically and start port programs. For other applicationsthat do not need this, directory pri v can
reside in the archive and the files under the directory pr i v can beread througher| _pri m | oader.

When a directory is added to the code path and when the entire code path is (re)set, the code server decides which
subdirectories in an application that are to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the code path is not updated (possibly to the
same path as before, to trigger the directory resolution update).

For each directory on the second level in the application archive (ebi n, priv, src, and so on), the code
server first chooses the regular directory if it exists and second from the archive. Function code: lib_dir/2
returns the path to the subdirectory. For example, code: i b_di r (megaco, ebi n) can return / ot p/ r oot /
i b/ megaco-3.9.1.1. ez/ megaco-3.9. 1. 1/ ebi n whilecode: | i b_di r (negaco, pri v) can return
/otp/root/lib/megaco-3.9.1.1/priv.

20 | Ericsson AB. All Rights Reserved.: Kernel

code

Whenanescri pt filecontainsan archive, there are no restrictions on the name of theescr i pt and no restrictions
on how many applications that can be stored in the embedded archive. Single Beam files can also reside on the top
level in the archive. At startup, the top directory in the embedded archive and all (second level) ebi n directoriesin
the embedded archive are added to the code path. Seeert s: escri pt (1) .

When the choice of directories in the code path is stri ct, the directory that ends up in the code path is
exactly the stated one. This means that if, for example, the directory $OTPROOT/ | i b/ mmesi a- 4. 4. 7/ ebi nis
explicitly added to the code path, the code server does not load files from $OTPROOT/ | i b/ mesi a- 4. 4. 7. ez/
mmesi a- 4. 4. 7/ ebi n.

This behavior can be controlled through command-line flag - code_pat h_choi ce Choi ce. If theflagisset to
r el axed, the code server instead chooses a suitable directory depending on the actua file structure. If a regular
application ebi n directory exists, it is chosen. Otherwise, the directory ebi n in the archive is chosen if it exists. If
neither of them exists, the original directory is chosen.

Command-lineflag- code_pat h_choi ce Choi ce alsoaffectshow modulei ni t interpretstheboot scri pt.
The interpretation of the explicit code pathsin the boot scri pt canbestrict orrel axed. Itisparticularly
useful to set the flag to r el axed when elaborating with code loading from archives without editing the boot
scri pt.Thedefaultisr el axed. Seeerts:init(3).

Current and Old Code

The code for amodule can exist in two variantsin asystem: current code and old code. When amoduleisloaded into
the system for the first time, the module code becomes 'current' and the global export tableis updated with references
to al functions exported from the module.

If then a new instance of the module is loaded (for example, because of error correction), the code of the previous
instance becomes'old’, and all export entriesreferring to the previousinstance are removed. After that, the new instance
isloaded as for the first time, and becomes 'current'.

Both old and current code for a module are valid, and can even be evaluated concurrently. The difference is that
exported functions in old code are unavailable. Hence, a global call cannot be made to an exported function in old
cade, but old code can still be evaluated because of processes lingeringin it.

If athird instance of the module isloaded, the code server removes (purges) the old code and any processes lingering
in it are terminated. Then the third instance becomes 'current’ and the previously current code becomes 'old'.

For more information about old and current code, and how to make a process switch from old to current code, see
section Compilation and Code Loading in the Erlang Reference Manual.

Argument Types and Invalid Arguments

Module and application names are atoms, while file and directory names are strings. For backward compatibility
reasons, some functions accept both strings and atoms, but a future release will probably only allow the arguments
that are documented.

Functions in this module generally fail with an exception if they are passed an incorrect type (for example, an integer
or atuple where an atom is expected). An error tuple is returned if the argument type is correct, but there are some
other errors (for example, a non-existing directory is specifiedto set _pat h/ 1).

Error Reasons for Code-Loading Functions

Functions that load code (such as| oad_fi | e/ 1) will return{ err or, Reason} if the load operation fails. Here
follows a description of the common reasons.

badfil e

The object code has an incorrect format or the module name in the object code is not the expected module name.

Ericsson AB. All Rights Reserved.: Kernel | 21

code

nofile

No file with object code was found.
not _pur ged

The object code could not be loaded because an old version of the code already existed.
on_load failure

The module has an -on_load function that failed when it was called.
sticky_directory

The object code resides in a sticky directory.

Data Types
load ret() =
{error, What :: load_error_rsn()} |

{module, Module :: module()}

load error rsn() =
badfile |
nofile |
not purged |
on load failure |
sticky directory

prepared code()
An opaque term holding prepared code.

Exports

set path(Path) -> true | {error, What}

Types:
Path = [Dir :: file:filenane()]
What = bad directory
Sets the code path to the list of directories Pat h.
Returns:
true
If successful

{error, bad_directory}
If any Di r isnot adirectory name

get path() -> Path

Types.
Path = [Dir :: file:filenane()]
Returns the code path.

22 | Ericsson AB. All Rights Reserved.: Kernel

code

add path(Dir) -> add_path_ret()
add pathz(Dir) -> add_path_ret()
Types:
Dir = file:filenanme()
add path ret() = true | {error, bad directory}

Adds Di r to the code path. The directory is added as the last directory in the new path. If Di r aready existsin the
path, it is not added.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add patha(Dir) -> add_path_ret()
Types:
Dir = file:filename()
add path ret() = true | {error, bad directory}
AddsDi r to the beginning of the code path. If Di r exists, it is removed from the old position in the code path.

Returnst r ue if successful, or{ error, bad_directory} if D r isnotthe name of adirectory.

add paths(Dirs) -> ok
add pathsz(Dirs) -> ok
Types:
Dirs = [Dir :: file:filename()]
Addsthedirectoriesin Di r s to the end of the code path. If aDi r exists, it is not added.
Always returns ok, regardless of the validity of each individual Di r .

add pathsa(Dirs) -> ok
Types:
Dirs = [Dir :: file:filenanme()]
TraversesDi r s and adds each Di r to the beginning of the code path. This means that the order of Di r s isreversed

in the resulting code path. For example, if you add [Di r 1, Di r 2] , the resulting path will be [Di r2, Di r 1]
A dCodePat h] .

If aDi r aready existsin the code path, it is removed from the old position.
Always returns ok, regardless of the validity of each individual Di r .

del path(NameOrDir) -> boolean() | {error, What}
Types:
NameOrDir = Name | Dir
Name = atom()
Dir = file:filenane()
What = bad name
Deletes a directory from the code path. The argument can be an atom Nane, in which case the directory with the

name. ../ Nanme[- Vsn] [/ ebi n] isdeleted from the code path. Also, the complete directory name Di r can be
specified as argument.

Returns:

Ericsson AB. All Rights Reserved.: Kernel | 23

code

true

If successful
fal se

If the directory is not found
{error, bad_nane}

If theargument isinvalid

replace path(Name, Dir) -> true | {error, What}
Types:
Name = atom()
Dir = file:filename()
What = bad directory | bad name | {badarg, term()}

Replaces an old occurrence of adirectory named. . . / Nanme[- Vsn] [/ ebi n] inthecode path, with Di r . If Nane
doesnot exist, it addsthe new directory Di r lastinthe code path. The new directory must alsobenamed. . . / Nang][-
Vsn] [/ ebi n] . Thisfunction isto be used if anew version of the directory (library) is added to a running system.

Returns:
true
If successful
{error, bad_nane}
If Nane is not found
{error, bad_directory}
If Di r does not exist
{error, {badarg, [Nanme, Dir]}}
If Nare or Di r isinvalid

load file(Module) -> load_ret()

Types.
Module = module()
load ret() =

{error, What :: load_error_rsn()} |
{module, Module :: module()}

Tries to load the Erlang module Modul e, using the code path. It looks for the object code file with an extension
corresponding to the Erlang machine used, for example, Modul e. beam Theloading failsif the module name found
in the object code differsfrom the name Modul e. | oad_bi nar y/ 3 must be used to load object code with amodule
name that is different from the file name.

Returns{ nodul e, Mbdul e} if successful, or{error, Reason} if loading fails. See Error Reasons for Code-
Loading Functions for a description of the possible error reasons.

load abs(Filename) -> load_ret()
Types:
Filename = file:fil enane()
load ret() =

24 | Ericsson AB. All Rights Reserved.: Kernel

code

{error, What :: load_error_rsn()} |
{module, Module :: module()}

loaded filename() =
(Filename :: file:filenane()) | | oaded_ret_atons()

loaded ret atoms() = cover_compiled | preloaded
Sameas!| oad_fil e(Mbdul e), but Fi | enane isan absolute or relative filename. The code path is not searched.

It returns avalue in the same way as| oad_fi |l e/ 1. Notice that Fi | ename must not contain the extension (for
example, . beam) because| oad_abs/ 1 addsthe correct extension.

ensure loaded(Module) -> {module, Module} | {error, What}
Types:
Module = module()
What = embedded | badfile | nofile | on_load failure
Triestoload amoduleinthesameway asl oad_fi | e/ 1, unlessthemoduleisalready loaded. However, in embedded

mode it does not load a module that is not aready loaded, but returns{ error, enbedded} instead. See Error
Reasons for Code-Loading Functions for a description of other possible error reasons.

load binary(Module, Filename, Binary) ->
{module, Module} | {error, What}

Types:
Module = module()
Filename = | oaded _fil enane()
Binary = binary()
What = badarg | | oad_error_rsn()
loaded filename() =
(Filename :: file:filenane()) | | oaded_ret_atomns()
loaded ret _atoms() = cover_compiled | preloaded
Thisfunction can be used to | oad obj ect code on remote Erlang nodes. Argument Bi nar y must contain object codefor

Modul e. Fi | enane isonly used by the code server to keep arecord of from which file the object code for Modul e
comes. Thus, Fi | enane is not opened and read by the code server.

Returns{ nodul e, Mbdul e} if successful, or { error, Reason} if loadingfails. See Error Reasonsfor Code-
Loading Functions for a description of the possible error reasons.

atomic load(Modules) -> ok | {error, [{Module, What}]}
Types.
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:fil enane()
Binary = binary()
What =
badfile |
nofile |
on load not allowed |
duplicated |
not purged |
sticky directory |

Ericsson AB. All Rights Reserved.: Kernel | 25

code

pending on load

Triesto load all of the modulesin the list Modul es atomically. That means that either all modules are loaded at the
same time, or none of the modules are loaded if there is a problem with any of the modules.

Loading can fail for one the following reasons:
badfile
The object code has an incorrect format or the module name in the object code is not the expected module name.
nofile
No file with object code exists.
on_| oad_not _al | owed
A module contains an -on_load function.
dupl i cat ed
A moduleisincluded more than oncein Modul es.
not purged
The object code can not be loaded because an old version of the code aready exists.
sticky_directory
The object code resides in a sticky directory.
pendi ng_on_| oad
A previously loaded module containsan - on_| oad function that never finished.

If it isimportant to minimize the time that an application is inactive while changing code, use prepare loading/1 and
finish_loading/1 instead of at oni ¢_| oad/ 1. Hereis an example:

{ok,Prepared} = code:prepare_loading(Modules),

Put the application into an inactive state or do any
other preparation needed before changing the code.
= code:finish loading(Prepared),

% Resume the application.

o o°
= o° o°

)

prepare loading(Modules) ->
{ok, Prepared} | {error, [{Module, What}]}

Types.
Modules = [Module | {Module, Filename, Binary}]
Module = module()
Filename = file:fil enanme()
Binary = binary()
Prepared = prepared_code()
What = badfile | nofile | on load not allowed | duplicated
Prepares to load the modules in the list Mbdul es. Finish the loading by calling finish_loading(Prepared).
This function can fail with one of the following error reasons:
badfil e

The object code has an incorrect format or the module name in the object code is not the expected module name.

26 | Ericsson AB. All Rights Reserved.: Kernel

code

nofile

No file with object code exists.
on_| oad_not _al | owed

A module contains an -on_load function.
dupl i cat ed

A moduleisincluded more than oncein Modul es.

finish loading(Prepared) -> ok | {error, [{Module, What}]}
Types:

Prepared = prepared_code()

Module = module()

What = not purged | sticky directory | pending on load

Tries to load code for all modules that have been previously prepared by prepare loading/1. The loading occurs
atomically, meaning that either all modules are loaded at the same time, or none of the modules are loaded.

This function can fail with one of the following error reasons:
not _pur ged
The object code can not be loaded because an old version of the code aready exists.
sticky directory
The object code residesin a sticky directory.
pendi ng_on_I| oad

A previously loaded module contains an - on_| oad function that never finished.

ensure modules loaded(Modules :: [Module]) ->
ok | {error, [{Module, What}]}

Types:
Module = module()
What = badfile | nofile | on load failure
Triesto load any modules not already loaded in the list Modul es inthe sameway asload file/1.

Returnsok if successful, or{ error, [{ Modul e, Reason}] } if loading of somemodulesfails. See Error Reasons
for Code-Loading Functions for a description of other possible error reasons.

delete(Module) -> boolean()
Types.
Module = module()

Removes the current code for Modul e, that is, the current code for Modul e is made old. This means that processes
can continue to execute the code in the module, but no external function calls can be madeto it.

Returnst r ue if successful, or f al se if thereis old code for Modul e that must be purged first, or if Modul e is
not a (loaded) module.

purge (Module) -> boolean()
Types.

Ericsson AB. All Rights Reserved.: Kernel | 27

code

Module = module()

Purgesthe code for Modul e, that is, removes code marked as old. If some processes still linger in the old code, these
processes are killed before the code is removed.

Asof ERTS version 9.0, a process is only considered to be lingering in the code if it has direct references to the
code. For moreinformation see documentation of er | ang: check_pr ocess_code/ 3, whichisused in order
to determine this.

Returnst r ue if successful and any process is needed to be killed, otherwisef al se.

soft purge(Module) -> boolean()
Types:
Module = module()

Purges the code for Mbdul e, that is, removes code marked as old, but only if no processes linger init.

As of ERTS version 9.0, aprocess is only considered to be lingering in the code if it has direct references to the
code. For more information see documentation of er | ang: check_process_code/ 3, whichisused in order
to determine this.

Returnsf al se if the module cannot be purged because of processes lingering in old code, otherwiset r ue.

is loaded(Module) -> {file, Loaded} | false

Types:
Module = module()
Loaded = | oaded_fil ename()
loaded filename() =
(Filename :: file:filenanme()) | | oaded_ret_atons()

Fi | enane is an absolute filename.
loaded ret _atoms() = cover_compiled | preloaded
Checksif Modul e isloaded. If itis, {fi | e, Loaded} isreturned, otherwisef al se.

Normally, Loaded is the absolute filename Fi | enane from which the code is obtained. If the module is
preloaded (see scri pt (4)), Loaded==pr el oaded. If the module is Cover-compiled (see cover (3)),
Loaded==cover _conpi | ed.

all loaded() -> [{Module, Loaded}]

Types.
Module = module()
Loaded = | oaded_fil ename()
loaded filename() =

(Filename :: file:filename()) | | oaded_ret_atons()
Fi | enane isan absolute filename.

28 | Ericsson AB. All Rights Reserved.: Kernel

code

loaded ret atoms() = cover_compiled | preloaded

Returns alist of tuples{ Modul e, Loaded} for all loaded modules. Loaded is normally the absolute filename,
asdescribed fori s_| oaded/ 1.

which(Module) -> Which

Types:
Module = module()
Which = file:filenane() | |oaded_ret_atons() | non existing

loaded ret atoms() = cover_compiled | preloaded

If the module is not loaded, this function searches the code path for the first file containing object code for Modul e
and returns the absol ute filename.

If the module isloaded, it returns the name of the file containing the loaded object code.
If the moduleis preloaded, pr el oaded isreturned.

If the moduleis Cover-compiled, cover _conpi | ed isreturned.

If the module cannot be found, non_exi st i ng isreturned.

get object code(Module) -> {Module, Binary, Filename} | error

Types:
Module = module()
Binary = binary()

Filename = file:fil enane()

Searches the code path for the object code of module Modul e. Returns { Modul e, Bi nary, Fil enane} if
successful, otherwise er r or . Bi nary isabinary data object, which contains the object code for the module. This
can be useful if codeisto be loaded on aremote node in a distributed system. For example, loading module Modul e
on anode Node is done asfollows:

{ Module, Binary, Filename} = code:get object code(Module),
rpc:call(Node, code, load binary, [Module, Filename, Binaryl]),

root dir() -> file:filename()
Returns the root directory of Erlang/OTP, which is the directory whereit isinstalled.
Example:

> code:root dir().
"/usr/local/otp"

lib dir() -> file:filename()
Returns the library directory, $OTPROCT/ | i b, where $OTPROOCT isthe root directory of Erlang/OTP.
Example:

> code:lib dir().
"/usr/local/otp/lib"

Ericsson AB. All Rights Reserved.: Kernel | 29

code

lib dir(Name) -> file:filename() | {error, bad name}
Types:
Name = atom()

Returnsthe path for the "library directory", the top directory, for an application Nane located under $OTPROOT/ | i b
or on adirectory referred to with environment variable ERL_ LI BS.

If aregular directory called Nanme or Nane- Vsn exists in the code path with an ebi n subdirectory, the path to this
directory isreturned (not the ebi n directory).

If the directory refers to a directory in an archive, the archive name is stripped away before the path is returned.
For example, if directory /usr/ 1 ocal /ot p/lib/ mesia-4.2.2. ez/ mesia-4.2.2/ebin isin the
path, / usr/ 1 ocal / ot p/ 1 i b/ mesi a- 4. 2. 2/ ebi n isreturned. This means that the library directory for an
application isthe same, regardlessiif the application residesin an archive or not.

Example:
> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns{ error, bad_nane} if Nanme isnot the name of an application under $OTPROOT/ | i b or on adirectory
referred to through environment variable ERL__ LI BS. Fails with an exception if Nane has the wrong type.

For backward compatibility, Narme is also allowed to be a string. That will probably change in afuture release.

lib dir(Name, SubDir) -> file:filenanme() | {error, bad name}
Types:
Name = SubDir = atom()

Returnsthe path to a subdirectory directly under the top directory of an application. Normally the subdirectoriesreside
under the top directory for the application, but when applications at |east partly resides in an archive, the situation is
different. Some of the subdirectories can reside as regular directories while other reside in an archive file. It is not
checked whether this directory exists.

Example:
> code:lib dir(megaco, priv).
"/usr/local/otp/lib/megaco-3.9.1.1/priv"

Fails with an exception if Nane or SubbDi r has the wrong type.

compiler dir() -> file:filename()
Returns the compiler library directory. Equivalenttocode: | i b_di r (compi l er).

priv_dir(Name) -> file:filenane() | {error, bad name}
Types:
Name = atom()
Returns the path to the pr i v directory in an application. Equivalentto code: | i b_di r (Name, priv).

30 | Ericsson AB. All Rights Reserved.: Kernel

code

For backward compatibility, Name is also allowed to be a string. That will probably change in afuture release.

objfile extension() -> nonempty string()
Returns the object code file extension corresponding to the Erlang machine used, namely . beam

stick dir(Dir) -> ok | error
Types:

Dir = file:filename()
MarksDi r as sticky.
Returns ok if successful, otherwiseer r or .

unstick dir(Dir) -> ok | error
Types:

Dir = file:filename()
Unsticks adirectory that is marked as sticky.
Returns ok if successful, otherwiseer r or .

is sticky(Module) -> boolean()
Types:
Module = module()

Returnst r ue if Modul e isthe name of a module that has been loaded from a sticky directory (in other words: an
attempt to reload the module will fail), or f al se if Modul e isnot aloaded module or is not sticky.

where is file(Filename) -> non_existing | Absname
Types:
Filename = Absname = file:fil enane()

Searches the code path for Fi | enane, afile of arbitrary type. If found, the full name is returned. non_exi sti ng
isreturned if the file cannot be found. The function can be useful, for example, to locate application resource files.

clash() -> ok
Searches al directoriesin the code path for module names with identical names and writes areport to st dout .

module status(Module :: module()) ->
not loaded | loaded | modified | removed

Returns:
not | oaded
If Modul e isnot currently loaded.
| oaded
If Mbdul e isloaded and the object file exists and contains the same code.

Ericsson AB. All Rights Reserved.: Kernel | 31

code

renmoved

If Mbdul e isloaded but no corresponding object file can be found in the code path.
nodi fi ed

If Mbdul e isloaded but the object file contains code with a different MD5 checksum.

Preloaded modules are always reported as| oaded, without inspecting the contents on disk. Cover compiled modules
will always be reported asnodi f i ed if an object file exists, or asr enpved otherwise. Modules whose load pathis
an empty string (which isthe convention for auto-generated code) will only bereported as| oaded or not _| oaded.

For modules that have native code loaded (seei s_nodul e_nat i ve/ 1), the MD5 sum of the native code in the
object fileis used for the comparison, if it exists, the Beam code in the fileisignored. Reversely, for modules that do
not currently have native code loaded, any native code in the file will be ignored.

Seedsonodi fi ed _nodul es/ 0.

modified modules() -> [module()]

Returns the list of al currently loaded modules for which nodul e_st at us/ 1 returns nodi fi ed. See also
al | _| oaded/ 0.

is _module native(Module) -> true | false | undefined
Types:

Module = module()
Returns:
true

If Modul e isthe name of aloaded module that has native code loaded
fal se

If Mbdul e isloaded but does not have native code
undefi ned

If Modul e isnot loaded

get mode() -> embedded | interactive
Returns an atom describing the mode of the code server: i nt er act i ve or enbedded.

Thisinformation is useful when an external entity (for example, an IDE) provides additional code for a running node.
If the code server is in interactive mode, it only has to add the path to the code. If the code server is in embedded
mode, the code must be loaded with | oad_bi nary/ 3.

32 | Ericsson AB. All Rights Reserved.: Kernel

disk log

disk log

Erlang module

di sk_| og isadisk-based term logger that enables efficient logging of items on files.
Two types of logs are supported:
halt logs

Appends itemsto asinglefile, which size can be limited by thedi sk_| og module.
wrap logs

Uses a segquence of wrap log files of limited size. Asawrap log fileis filled up, further items are logged on to
the next file in the sequence, starting all over with the first file when the last file isfilled up.

For efficiency reasons, items are always written to files as binaries.
Two formats of the log files are supported:
internal format

Supports automatic repair of log files that are not properly closed and enables efficient reading of logged items
in chunks using a set of functions defined in this module. Thisisthe only way to read internally formatted logs.
An item logged to an internally formatted log must not occupy more than 4 GB of disk space (the size must fit
in 4 bytes).

external format

Leaves it up to the user to read and interpret the logged data. The di sk_| og module cannot repair externally
formatted logs.

For each open disk log, one process handles requests made to the disk log. This process is created when open/ 1 is
called, provided there exists no process handling the disk log. A process that opens a disk log can be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and an owner can close the disk log
either explicitly (by callingcl ose/ 1 orl cl ose/ 1, 2) or by terminating.

Owners can subscribe to notifications, messages of theform { di sk_| og, Node, Log, | nfo},whicharesent
from the disk log process when certain events occur, see the functions and in particular theopen/ 1 optionnot i fy.
A log can have many owners, but a process cannot own a log more than once. However, the same process can open
the log as a user more than once.

For adisk log processto closeits file properly and terminate, it must be closed by its owners and once by some non-
owner process for each time the log was used anonymously. The users are counted and there must not be any users
left when the disk log process terminates.

Itemscan belogged synchronously by using functionsl og/ 2,bl og/ 2,1 og_t er ns/ 2,andbl og_t er s/ 2. For
each of these functions, the caller is put on hold until the items are logged (but not necessarily written, usesync/ 1 to
ensurethat). By adding an a to each of the mentioned function names, we get functionsthat log itemsasynchronously.
Asynchronous functions do not wait for the disk log process to write the items to the file, but return the control to
the caller more or lessimmediately.

When using the internal format for logs, use functions| og/ 2,1 og _terns/ 2, al og/ 2, and al og_t er ns/ 2.
These functions log one or more Erlang terms. By prefixing each of the functions with a b (for "binary"), we get
the corresponding bl og() functions for the external format. These functions log one or more chunks of bytes.
For example, to log the string " hel | 0" in ASCII format, you can usedi sk_| og: bl og(Log, "hello"),or
di sk_1 og: bl og(Log, list_to_binary("hello")).Thetwo aternativesare equally efficient.

Thebl og() functionscan also be used for internally formatted logs, but in this case they must be called with binaries
constructed with callstot er m_t o_bi nary/ 1. There is no check to ensure this, it is entirely the responsibility of

Ericsson AB. All Rights Reserved.: Kernel | 33

disk log

the caller. If these functions are called with binaries that do not correspond to Erlang terms, the chunk/ 2, 3 and
automatic repair functions fail. The corresponding terms (not the binaries) are returned when chunk/ 2, 3 iscalled.

A collection of open disk logs with the same name running on different nodes is said to be adistributed disk log if
reguests made to any of the logs are automatically made to the other logs as well. The members of such a collection
arecalled individual distributed disk logs, or just distributed disk logsif thereisno risk of confusion. Thereisno order
between the members of such a collection. For example, logged terms are not necessarily written to the node where
the request was made before written to the other nodes. However, afew functions do not make requeststo all members
of distributed disk logs, namely i nf o/ 1, chunk/ 2, 3, bchunk/ 2, 3, chunk_step/ 3,and| cl ose/ 1, 2.

An open disk log that is not a distributed disk log is said to be alocal disk log. A local disk log is only accessible
from the node where the disk 1og process runs, whereas a distributed disk log is accessible from all nodesin the Erlang
system, except for those nodeswherealocal disk |og with the same name asthedistributed disk |og exists. All processes
on nodes that have accessto alocal or distributed disk log can log items or otherwise change, inspect, or close thelog.

It is not guaranteed that all log files of a distributed disk log contain the same log items. No attempt is made to
synchronize the contents of the files. However, as long as at least one of the involved nodes is alive at each time,
all items are logged. When logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs areignored. If al nodes are down, the disk log functions reply with anonode error.

Note:

In some applications, it can be unacceptable that replies from individual logs are ignored. An aternative in such
situationsisto use many local disk logsinstead of one distributed disk log, and implement the distribution without
use of thedi sk_| og module.

Errors are reported differently for asynchronous log attempts and other uses of the di sk_| og module. When used
synchronously, this module replies with an error message, but when called asynchronously, this modul e does not know
where to send the error message. Instead, owners subscribing to notificationsreceive an er r or _st at us message.

Thedi sk_| og module doesnot report errorstotheer r or _| ogger module. It isup to the caller to decide whether
to employ theerror logger. Functionf or mat _er r or / 1 can beused to produce readable messagesfrom error replies.
However, information events are sent to the error logger in two situations, namely when alog is repaired, or when
afileis missing while reading chunks.

Error message no_such_| og means that the specified disk log is not open. Nothing is said about whether the disk
log files exist or not.

If an attempt to reopen or truncate a log fails (see r eopen/ 2, 3 and t runcat e/ 1, 2) the disk log process
terminates immediately. Before the process terminates, links to owners and blocking processes (see bl ock/ 1, 2)
areremoved. The effect is that the links work in one direction only. Any process using a disk log must check for
error message no_such_| og if some other process truncates or reopens the log simultaneously.

Data Types

log() = term()

dlog size() =
infinity |
integer() >= 1 |

34 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}
dlog format() = external | internal
dlog head opt() = none | term() | iodata()
dlog mode() = read only | read write
dlog type() = halt | wrap
continuation()
Chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3.

invalid header() = term()
file error() = term()

Exports

accessible logs() -> {[LocallLog], [DistributedLog]}
Types:
LocalLog = DistributedLog = | 0og()

Returns the names of the disk logs accessible on the current node. Thefirst list containslocal disk logs and the second
list contains distributed disk logs.

alog(Log, Term) -> notify ret()
balog(Log, Bytes) -> notify_ret()
Types:
Log = I og()
Term = term()
Bytes = iodata()
notify ret() = ok | {error, no such log}
Asynchronously append an item to a disk log. al og/ 2 is used for internally formatted logs and bal og/ 2 for

externally formatted logs. bal og/ 2 can also be used for internally formatted logs if the binary is constructed with
acdltotermto_binary/1.

Owners subscribing to notifications receive messager ead_onl y, bl ocked_| og, or f or mat _ext er nal if the
item cannot be written on the log, and possibly one of the messageswr ap, ful | , or err or _st at us if an item
is written on the log. Message er r or _st at us is sent if something is wrong with the header function or if afile
€rror occurs.

alog terms(Log, TermList) -> notify_ret()
balog terms(Log, BytelList) -> notify_ret()
Types.
Log = 1 og()
TermList = [term()]
BytelList = [iodata()]
notify ret() = ok | {error, no such log}
Asynchronously append a list of items to a disk log. al og_t erns/ 2 is used for internally formatted logs and

bal og_t er ms/ 2 for externally formatted logs. bal og_t er ms/ 2 can aso be used for internally formatted logs if
the binaries are constructed with callstot erm t o_bi nary/ 1.

Ericsson AB. All Rights Reserved.: Kernel | 35

disk log

Owners subscribing to notifications receive messager ead_onl y, bl ocked_I og, or f or mat _ext er nal if the
items cannot be written on the log, and possibly one or more of the messageswr ap, ful | , and err or _st at us
if items are written on the log. Message er r or _st at us is sent if something is wrong with the header function or
if afile error occurs.

block(Log) -> ok | {error, block_error_rsn()}
block(Log, QueuelLogRecords) -> ok | {error, block_error_rsn()}
Types.
Log = 1 og()
QueuelLogRecords = boolean()
block error rsn() = no such log | nonode | {blocked log, log()}
With acall to bl ock/ 1, 2 aprocess can block alog. If the blocking processis not an owner of the log, atemporary

link is created between the disk log process and the blocking process. The link ensures that the disk log is unblocked
if the blocking process terminates without first closing or unblocking the log.

Any process can probe a blocked log with i nf o/ 1 or close it with cl ose/ 1. The blocking process can aso
use functions chunk/ 2, 3, bchunk/ 2, 3, chunk_st ep/ 3, and unbl ock/ 1 without being affected by the
block. Any other attempt than those mentioned so far to update or read a blocked log suspends the calling process
until the log is unblocked or returns error message { bl ocked_| og, Log}, depending on whether the value of
QueuelLogRecords istrue orfal se. QueueLogRecor ds defaultstot r ue, whichisused by bl ock/ 1.

change header(Log, Header) -> ok | {error, Reason}

Types:
Log = 1 0g()
Header =
{head, dl og_head_opt()} |
{head func, MFA :: {atom(), atom(), list()}}
Reason =
no_such log |
nonode |

{read only mode, Log} |
{blocked log, Log} |
{badarg, head}

Changes the value of option head or head_f unc for an owner of adisk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}
Types:

Log = I og()

Owner = pid()

Notify = boolean()

Reason =
no_such log |
nonode |
{blocked log, Log} |
{badarg, notify} |
{not_owner, Owner}

Changes the value of option not i fy for an owner of adisk log.

36 | Ericsson AB. All Rights Reserved.: Kernel

disk log

change size(Log, Size) -> ok | {error, Reason}
Types:
Log = 1 0g()
Size = dl og_si ze()
Reason =
no_such log |
nonode |
{read only mode, Log} |
{blocked log, Log} |
{new size too small, Log, CurrentSize :: integer() >= 1} |
{badarg, size} |
{file error, file:filenanme(), file_error()}

Changesthe size of an openlog. For ahalt log, the size can alwaysbeincreased, but it cannot be decreased to something
less than the current file size.

For awrap log, both the size and the number of files can always be increased, as long as the number of files does
not exceed 65000. If the maximum number of files is decreased, the change is not valid until the current file is full
and the log wraps to the next file. The redundant files are removed the next time the log wraps around, that is, starts
tolog to file number 1.

As an example, assume that the old maximum number of filesis 10 and that the new maximum number of filesis 6.
If the current file number is not greater than the new maximum number of files, files 7-10 are removed when file 6
isfull and the log starts to write to file number 1 again. Otherwise, the files greater than the current file are removed
when the current file is full (for example, if the current fileis 8, files 9 and 10 are removed). The files between the
new maximum number of files and the current file (that is, files 7 and 8) are removed the next time file 6 isfull.

If the size of the files is decreased, the change immediately affects the current log. It does not change the size of log
files already full until the next time they are used.

If the log size is decreased, for example, to save space, functioni nc_w ap_fil e/ 1 can be used to force the log
to wrap.

chunk(Log, Continuation) -> chunk_ret()
chunk(Log, Continuation, N) -> chunk_ret()
bchunk(Log, Continuation) -> bchunk ret ()
bchunk(Log, Continuation, N) -> bchunk_ret()
Types:

Log = I og()

Continuation = start | continuation()

N = integer() >= 1 | infinity

chunk ret() =

{Continuation2 :: continuation(), Terms :: [term()]1} |
{Continuation2 :: continuation(),

Terms :: [term()],

Badbytes :: integer() >= 0} |
eof |

{error, Reason :: chunk_error_rsn()}

bchunk ret() =

{Continuation2 :: continuation(), Binaries :: [binary()1} |
{Continuation2 :: continuation(),

Binaries :: [binary()],

Ericsson AB. All Rights Reserved.: Kernel | 37

disk log

Badbytes :: integer() >= 0} |
eof |
{error, Reason :: chunk_error_rsn()}

chunk _error _rsn() =
no_such log |
{format_external, log()} |
{blocked log, log()} |
{badarg, continuation} |
{not_internal wrap, log()} |
{corrupt log file, FileName :: file:filenane()} |
{file error, file:filenane(), file_error()}

Efficiently reads the terms that are appended to an internally formatted log. It minimizes disk 1/O by reading 64
kilobyte chunks from the file. Functions bchunk/ 2, 3 return the binaries read from the file, they do not call
bi nary_to_tern().Apart fromthat, they work just likechunk/ 2, 3.

The first time chunk() (or bchunk()) iscalled, an initia continuation, the atom st ar t , must be provided. If a
disk log processis running on the current node, terms are read from that log. Otherwise, an individual distributed log
on some other node is chosen, if such alog exists.

When chunk/ 3 iscalled, N control s the maximum number of termsthat are read from thelog in each chunk. Defaults
toi nfinity, which meansthat all the terms contained in the 64 kilobyte chunk are read. If less than N terms are
returned, this does not necessarily mean that the end of the fileis reached.

chunk() returns a tuple { Conti nuati on2, Terns}, where Terns is a list of terms found in the log.
Cont i nuat i on2 isyet another continuation, which must be passed on to any subsequent callsto chunk() . With
aseries of calsto chunk() , al termsfrom alog can be extracted.

chunk() returnsatuple { Conti nuati on2, Terns, Badbytes} if thelog is opened in read-only mode
and the read chunk is corrupt. Badbyt es is the number of bytes in the file found not to be Erlang terms in the
chunk. Notice that the log is not repaired. When trying to read chunks from a log opened in read-write mode, tuple
{corrupt _log file, FileNane} isreturnedif theread chunk iscorrupt.

chunk() returnseof when the end of thelog isreached, or { error, Reason} if anerror occurs. If awrap log
fileis missing, amessage is output on the error log.

When chunk/ 2, 3 isused with wrap logs, the returned continuation might not be valid in the next call to chunk() .
This is because the log can wrap and delete the file into which the continuation points. To prevent this, the log can
be blocked during the search.

chunk_info(Continuation) -> InfolList | {error, Reason}

Types:
Continuation = continuation()
InfoList = [{node, Node :: node()}, ...]

Reason = {no continuation, Continuation}

Returns the pair { node, Node}, describing the chunk continuation returned by chunk/ 2, 3, bchunk/ 2, 3, or
chunk_st ep/ 3.

Terms are read from the disk log running on Node.
chunk step(Log, Continuation, Step) ->

{ok, any()} | {error, Reason}
Types:

38 | Ericsson AB. All Rights Reserved.: Kernel

disk log

Log = log()
Continuation = start | continuation()
Step = integer()

Reason =
no such log |
end of log |

{format external, Log} |

{blocked log, Log} |

{badarg, continuation} |

{file error, file:filenane(), file_error()}

Can be used with chunk/ 2, 3 and bchunk/ 2, 3 to search through an internally formatted wrap log. It takes as
argument a continuation as returned by chunk/ 2, 3, bchunk/ 2, 3, or chunk_st ep/ 3, and steps forward (or
backward) St ep filesin the wrap log. The continuation returned, points to the first log item in the new current file.

If atom st ar t isspecified as continuation, adisk log to read terms from is chosen. A local or distributed disk log on
the current node is preferred to an individua distributed log on some other node.

If the wrap log is not full because all files are not yet used, { error, end_of | og} isreturned if trying to step
outside the log.

close(Log) -> ok | {error, close_error_rsn()}
Types:
Log = log()
close error_rsn() =
no_such log |
nonode |
{file error, file:filenane(), file_error()}

Closes alocal or distributed disk log properly. An internally formatted log must be closed before the Erlang system
is stopped. Otherwise, the log is regarded as unclosed and the automatic repair procedure is activated next time the
log is opened.

The disk log processis not terminated as long as there are owners or users of the log. All owners must close the log,
possibly by terminating. Also, any other process, not only the processes that have opened the log anonymously, can
decrement theuser s counter by closing the log. Attemptsto close alog by aprocessthat isnot an owner areignored
if there are no users.

If thelog is blocked by the closing process, the log is aso unblocked.

format error(Error) -> io_lib:chars()
Types:
Error = term()

Given theerror returned by any function in this module, thisfunction returns a descriptive string of the error in English.
For file errors, functionf or mat _error/ 1 inmodulefi | e iscaled.

inc_wrap file(Log) -> ok | {error, inc_wap_error_rsn()}
Types:
Log = | og()
inc_wrap _error_rsn() =
no_such log |
nonode |

Ericsson AB. All Rights Reserved.: Kernel | 39

disk log

{read only mode, log()} |

{blocked log, log()?} |

{halt _log, log()?} |

{invalid header, invalid_header()} |

{file error, file:filename(), file_error()}

invalid header() = term()

Forces the internally formatted disk log to start logging to the next log file. It can be used, for example, with
change_si ze/ 2 to reduce the amount of disk space allocated by the disk log.

Owners subscribing to notifications normally receive a wr ap message, but if an error occurs with a reason tag of
i nval i d_header orfile_error,anerror_status messageis sent.

info(Log) -> InfoList | {error, no such log}

Types:
Log

= log()

InfoList = [dlog_info()]
dlog info() =

{name, Log :: log()} |

{file, File :: file:filename()} |

{type, Type :: dlog_type()} |

{format, Format :: dlog_format()} |

{size, Size :: dlog_size()} |

{mode, Mode :: dlog_nmode()} |

{owners, [{pid(), Notify :: boolean()}1} |
{users, Users :: integer() >= 0} |
{status,

Status :: ok | {blocked, QueueLogRecords :: boolean()}} |
{node, Node :: node()} |

{distributed, Dist :: local | [node()]} |

{head,
Head ::

none | {head, term()} | (MFA :: {atom(), atom(), list()})} |
{no written items, NoWrittenItems :: integer() >= 0} |

{full, Full :: boolean} |
{no _current bytes, integer() >= 0} |
{no current items, integer() >= 0}
{no _items, integer() >= 0} |
{current file, integer() >= 1} |
{no_overflows,
{SinceLogWasOpened :: integer() >= 0,
SincelLastInfo :: integer() >= 0}}

Returnsalist of { Tag, Val ue} pairsdescribing the log. If adisk log process is running on the current node, that
log is used as source of information, otherwise an individual distributed log on some other node is chosen, if such
alog exists.

The following pairs are returned for all logs:

{ nane,

Log}

Log isthelog name as specified by the open/ 1 option nane.

40 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{file, File}

For halt logs Fi | e isthe filename, and for wrap logs Fi | e isthe base name.
{type, Type}

Type isthelog type as specified by theopen/ 1 optiont ype.
{format, Fornat}

For mat isthelog format as specified by theopen/ 1 option f or nat .
{size, Size}

Si ze isthelog size as specified by the open/ 1 option si ze, or thesize set by change_si ze/ 2. Thevalue
set by change_si ze/ 2 isreflected immediately.

{node, Mode}
Mbde isthe log mode as specified by the open/ 1 option node.
{owners, [{pid(), Notify}]}

Not i fy isthe value set by the open/ 1 option not i fy or function change_noti fy/ 3 for the owners of
the log.

{users, Users}

User s isthe number of anonymous users of the log, seethe open/ 1 option| i nkt o.
{status, Status}

St at us isok or { bl ocked, QueuelLogRecor ds} asset by functionsbl ock/ 1, 2 and unbl ock/ 1.
{node, Node}

The information returned by the current invocation of function i nf o/ 1 is gathered from the disk log process
running on Node.

{distributed, Dist}

If thelogislocal onthe current node, Di st hasthevaluel ocal , otherwise all nodeswherethelog isdistributed
arereturned asalist.

Thefollowing pairs are returned for all logs openedinr ead_wr i t € mode:
{head, Head}

Depending on the value of the open/ 1 options head and head func, or set by function
change_header/ 2, the value of Head is none (default), { head, H} (head option), or { M F, A}
(head_f unc option).

{no_witten_itenms, NoWittenltens}
NoW i t t enl t ens isthe number of itemswritten to the log since the disk log process was created.
The following pair isreturned for halt logs opened inr ead_wr i t e mode:
{full, Full}
Ful | istrue orf al se depending on whether the halt log is full or not.
The following pairs are returned for wrap logs openedinr ead_wr i t € mode:
{no_current _bytes, integer() >= 0}
The number of bytes written to the current wrap log file.
{no_current _itens, integer() >= 0}

The number of items written to the current wrap log file, header inclusive.

Ericsson AB. All Rights Reserved.: Kernel | 41

disk log

{no_items, integer() >= 0}
The total number of itemsin all wrap log files.
{current_file, integer()}

The ordinal for the current wrap log filein therange 1. . MaxNoFi | es, where MaxNoFi | es is specified by
theopen/ 1 option si ze or set by change_si ze/ 2.

{no_overfl ows, {SinceLogWasOpened, SincelLastl|nfo}}

Si nceLogWasOpened (Si ncelLast | nf 0) isthe number of times awrap log file has been filled up and a
new oneisopened ori nc_w ap_fil e/ 1 hasbeen called since the disk log was last opened (i nf o/ 1 was
last called). Thefirsttimei nf o/ 2 iscalled after alog was (re)opened or truncated, the two values are equal .

Notice that functions chunk/ 2, 3, bchunk/ 2, 3, and chunk_st ep/ 3 do not affect any value returned by
i nfoll.

lclose(Log) -> ok | {error, Iclose_error_rsn()}
lclose(Log, Node) -> ok | {error, Iclose_error_rsn()}
Types.

Log = log()
Node = node()

lclose error _rsn() =
no such log | {file error, file:filename(), file_error()}

| cl osel/ 1 closesalocal log or anindividual distributed log on the current node.

| cl ose/ 2 closes an individual distributed log on the specified node if the node is not the current one.
| cl ose(Log) isequivalenttol cl ose(Log, node()).Seeasocl ose/ 1.

If no log with the specified name exist on the specified node, no_such_| og isreturned.

log(Log, Term) -> ok | {error, Reason :: log_error_rsn()}
blog(Log, Bytes) -> ok | {error, Reason :: log_error_rsn()}
Types:

Log = 1 0g()

Term = term()
Bytes = iodata()
log _error_rsn()

no_such log |

nonode |

{read only mode, log()} |

{format_external, log()} |

{blocked log, log()} |

{full, log()} |

{invalid header, invalid_header()} |

{file error, file:filename(), file_error()}

Synchronously appends aterm to adisk log. Returnsok or { er r or, Reason} when the termiswritten to disk. If
thelog isdistributed, ok isreturned, unless all nodes are down. Terms are written by the ordinary wr i t e() function
of the operating system. Hence, it is not guaranteed that the term iswritten to disk, it can linger in the operating system
kernel for awhile. To ensure that the item is written to disk, function sync/ 1 must be called.

42 | Ericsson AB. All Rights Reserved.: Kernel

disk log

| og/ 2 isused for internally formatted logs, and bl og/ 2 for externally formatted logs. bl og/ 2 can also be used
for internally formatted logs if the binary is constructed withacallto t erm t o_bi nary/ 1.

Owners subscribing to notifications are notified of an error with an er r or _st at us message if the error reason tag
isinval i d_header orfile_error.

log terms(Log, TermList) ->

ok | {error, Resaon :: log_error_rsn()}
blog terms(Log, ByteslList) ->
ok | {error, Reason :: log_error_rsn()}
Types:
Log = 1 0g()

TermList = [term()]

ByteslList = [iodata()]

log error_rsn() =
no_such log |
nonode |
{read only mode, log()} |
{format_external, log()} |
{blocked log, log()} |

{full, log()} |
{invalid header, invalid_header()} |
{file error, file:filename(), file_error()}

Synchronously appends alist of itemsto thelog. It is more efficient to use these functionsinstead of functions!| og/ 2
and bl og/ 2. The specified list is split into as large sublists as possible (limited by the size of wrap log files), and
each sublist islogged as one single item, which reduces the overhead.

|l og terns/ 2 is used for internaly formatted logs, and bl og terns/2 for externaly formatted logs.
bl og terns/ 2 can aso be used for internally formatted logs if the binaries are constructed with calls to
termto_binary/1.

Owners subscribing to notifications are notified of an error with aner r or _st at us message if the error reason tag
isi nval i d_header orfile_error.

open(ArgL) -> open_ret() | dist_open_ret()
Types:

ArgL = dl og_options()

dlog options() = [dl og_option()]

dlog option() =

{name, Log :: log()} |

{file, FileName :: file:filenane()} |
{linkto, LinkTo :: none | pid()} |

{repair, Repair :: true | false | truncate} |

{type, Type :: dlog_type()} |

{format, Format :: dlog_format()} |

{size, Size :: dlog_size()} |

{distributed, Nodes :: [node()]1} |

{notify, boolean()} |

{head, Head :: dl og_head_opt()} |

{head func, MFA :: {atom(), atom(), Ulist()}} |
{quiet, boolean()} |

Ericsson AB. All Rights Reserved.: Kernel | 43

disk log

{mode, Mode :: dl og_node()}
open ret() =ret() | {error, open_error_rsn()}

ret() =
{ok, Log :: log()} |
{repaired,
Log :: log(),
{recovered, Rec :: integer() >= 0},

{badbytes, Bad :: integer() >= 0}}
dist open ret() =

{[{node(), ret()}], [{node(), {error, dist_error_rsn()}}1}
dist error _rsn() nodedown | open_error_rsn()

open_error_rsn()
no_such log |
{badarg, term()} |
{size mismatch,
CurrentSize :: dl og_size(),
NewSize :: dlog_size()} |
{arg mismatch,
OptionName :: dlog optattr(),

CurrentValue :: term(),

Value :: term()} |

{name_already open, Log :: log()} |

{open read write, Log :: log()} |

{open_read only, Log :: log()} |

{need repair, Log :: log()} |

{not_a log file, FileName :: file:filename()} |
{invalid index file, FileName :: file:filename()} |

{invalid header, invalid_header()} |
{file error, file:filename(), file_error()} |
{node_already open, Log :: log()}
dlog optattr() =
name |
file |
linkto |
repair |
type |
format |
size |
distributed |
notify |
head |
head func |
mode
dlog size() =
infinity |
integer() >= 1 |
{MaxNoBytes :: integer() >= 1, MaxNoFiles :: integer() >= 1}

Parameter Ar gL isalist of the following options:

44 | Ericsson AB. All Rights Reserved.: Kernel

disk log

{nane, Log}

Specifies the log name. This name must be passed on as a parameter in all subsequent logging operations. A
name must always be supplied.

{file, FileNane}

Specifies the name of the file to be used for logged terms. If this value is omitted and the log name is an atom or
astring, the filename defaultsto | i st s: concat ([Log, ".LOG']) for haltlogs.

For wrap logs, this is the base name of thefiles. Each filein awrap log iscaled <base_nane>. N, where Nis
an integer. Each wrap log also hastwo files called <base_nane>. i dx and <base_nane>. si z.

{l'i nkto, LinkTo}

If Li nkTo is a pid, it becomes an owner of the log. If Li nkTo is none, the log records that it is used
anonymously by some process by incrementing the user s counter. By default, the process that calls open/ 1
ownsthe log.

{repair, Repair}

If Repair istrue, the current log file is repaired, if needed. As the restoration is initiated, a message is
output on the error log. If f al se is specified, no automatic repair is attempted. Instead, the tuple { er r or,
{need_repair, Log}} isreturnedif anattemptismadetoopenacorruptlogfile.Ift r uncat e isspecified,
the log file becomes truncated, creating an empty log. Defaults to t r ue, which has no effect on logs opened
in read-only mode.

{type, Type}

Thelog type. Defaultsto hal t .
{format, Fornat}

Disk log format. Defaultstoi nt er nal .
{size, Size}

Logsize.

When ahalt log hasreached itsmaximum size, all attemptstolog moreitemsarerejected. Defaultstoi nfi ni ty,
which for halt implies that there is no maximum size.

For wrap logs, parameter Si ze can be a pair { MaxNoByt es, MaxNoFi | es} ori nfinity. Inthe latter
case, if thefiles of an existing wrap log with the same name can be found, the size is read from the existing wrap
log, otherwise an error is returned.

Wrap logs write at most MaxNoByt es bytes on each file and use MaxNoFi | es files before starting al over
with the first wrap log file. Regardless of MaxNoByt es, at least the header (if there is one) and one item are
written on each wrap log file before wrapping to the next file.

When opening an existing wrap log, it is not necessary to supply a value for option Si ze, but any supplied
value must equal the current log size, otherwisethetuple{error, {size_mi smatch, CurrentSi ze,
NewSi ze} } isreturned.

{di stributed, Nodes}

This option can be used for adding members to a distributed disk log. Defaultsto [] , which means that the log
islocal on the current node.

{notify, boolean()}

If t r ue, thelog owners are notified when certain log events occur. Defaultsto f al se. The owners are sent one
of the following messages when an event occurs:

Ericsson AB. All Rights Reserved.: Kernel | 45

disk log

{di

sk_l og, Node, Log, {wap, NoLostltens}}

Sent when awrap log has filled up one of its filesand a new fileis opened. NoLost | t ens isthe humber
of previously logged items that were lost when truncating existing files.

sk_l og, Node, Log, {truncated, NolLostltens}}

{di

Sent when alog is truncated or reopened. For halt logs NoLost | t ens isthe number of items written on
the log since the disk log process was created. For wrap logs NoLost | t ens is the number of items on
all wrap log files.

{di

sk |l og, Node, Log, {read only, Itens}}

Sent when an asynchronous log attempt is made to alog file opened in read-only mode. | t ens istheitems
from the log attempt.

{di

sk_l og, Node, Log, {blocked_ |og, Itens}}

Sent when an asynchronous log attempt is made to a blocked log that does not queue log attempts. | t errs
isthe items from the log attempt.

{di sk_l og, Node, Log, {format_external, Itens}}
Sent when function al og/ 2 or al og_t er ns/ 2 isused for internally formatted logs. | t ens istheitems
from the log attempt.

{di sk _|og, Node, Log, full}

Sent when an attempt to log items to awrap log would write more bytes than the limit set by option si ze.

{di sk_log, Node, Log, {error_status, Status}}

Sent when the error status changes. The error status is defined by the outcome of the last attempt to log
items to the log, or to truncate the log, or the last use of function sync/1,inc_wap_file/1l, or
change_si ze/ 2. St at us iseitherok or {error, Error},theformeristheinitia value.

{head, Head}

Specifies a header to be written first on the log file. If thelog isawrap log, the item Head iswritten first in each
new file. Head isto be aterm if the format isi nt er nal , otherwise a sequence of bytes. Defaults to none,
which means that no header iswritten first on thefile.

{head_func, {MF, A}}

Specifiesafunction to be called each time anew log fileisopened. Thecall M F(A) isassumed to return { ok,
Head} . Theitem Head iswritten first in each file. Head isto be atermif theformat isi nt er nal , otherwise
a sequence of bytes.

{node, Mode}
Specifiesif thelog isto be opened in read-only or read-write mode. Defaultstor ead_wri t e.
{qui et, Bool ean}
Specifiesif messageswill besenttoer r or _| ogger onrecoverableerrorswiththelogfiles. Defaultstof al se.

open/ 1 returns { ok, Log} if the log file is successfully opened. If the file is successfully repaired, the tuple
{repaired, Log, {recovered, Rec}, {badbytes, Bad}} isreturned, where Rec isthe number
of whole Erlang terms found in the file and Bad is the number of bytes in the file that are non-Erlang terms. If the
parameter di st ri but ed is specified, open/ 1 returns a list of successful replies and a list of erroneous replies.
Each reply istagged with the node name.

When adisk log is opened in read-write mode, any existing log fileis checked for. If thereisnone, anew empty logis
created, otherwise the existing file is opened at the position after the last logged item, and the logging of items starts

46 | Ericsson AB. All Rights Reserved.: Kernel

disk log

from there. If the format isi nt er nal and the existing file is not recognized as an internally formatted log, a tuple
{error, {not_a log file, FileNane}} isreturned.

open/ 1 cannot be used for changing the values of options of an open log. When there are prior owners or users of
alog, all option values except name, | i nkt 0, and not i fy are only checked against the values supplied before as
option valuesto functionopen/ 1, change_header/ 2,change_noti fy/ 3,orchange_si ze/ 2. Thus, none
of the options except nane is mandatory. If some specified value differs from the current value, atuple { err or,
{arg_m smatch, OptionNane, CurrentVal ue, Val ue}} isreturned.

If an owner attempts to open alog as owner once again, it is acknowledged with the return value { ok, Log},
but the state of the disk log is not affected.

If alog with a specified name is local on some node, and one tries to open the log distributed on the same node, the
tuple{error, {node_al ready_open, Log}} isreturned. Thesametupleisreturnedif thelog is distributed
on some node, and one tries to open the log locally on the same node. Opening individual distributed disk logs for the
first time adds those logs to a (possibly empty) distributed disk log. The supplied option values are used on all nodes
mentioned by option di st ri but ed. Individua distributed logs know nothing about each other's option values, so
each node can be given unique option values by creating a distributed log with many callsto open/ 1.

A log file can be opened more than once by giving different values to option nane or by using the same file when
distributing alog on different nodes. It is up to the user of module di sk_| og to ensure that not more than one disk
log process has write access to any file, otherwise the file can be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates with the EXIT message
{{failed, Reason}, [{di sk_| og, open, 1}]1}. The function returns { error, Reason} for al other
errors.

pid2name(Pid) -> {ok, Log} | undefined

Types:
Pid = pid()
Log = log()

Returns the log name given the pid of adisk log process on the current node, or undef i ned if the specified pid is
not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File) -> ok | {error, reopen_error_rsn()}
reopen(Log, File, Head) -> ok | {error, reopen_error_rsn()}
breopen(Log, File, BHead) -> ok | {error, reopen_error_rsn()}
Types:

Log = 1 og()

File = file:fil enane()

Head = term()

BHead = iodata()

reopen error rsn() =
no such log |
nonode |
{read_only mode, log()} |
{blocked log, log()} |

Ericsson AB. All Rights Reserved.: Kernel | 47

disk log

{same_file name, log()} |

{invalid index file, file:filenanme()} |
{invalid header, invalid_header()} |

{file error, file:filename(), file_error()}

Renamesthelogfileto Fi | e and then recreatesanew log file. If awrap log exists, Fi | e isused as the base name of
the renamed files. By default the header givento open/ 1 iswritten first in the newly opened log file, but if argument
Head or BHead is specified, thisitem is used instead. The header argument is used only once. Next time awrap log
file is opened, the header given to open/ 1 isused.

reopen/ 2, 3 are used for internally formatted logs, and br eopen/ 3 for externally formatted logs.
Owners subscribing to notifications receiveat r uncat e message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message {{fai |l ed, Error},
[{disk_|og, Fun, Arity}]}. Other processes having requests queued receive the message {di sk_I og,
Node, {error, disk_|og stopped}}.

sync(Log) -> ok | {error, sync_error_rsn()}
Types:
Log = I og()
sync_error_rsn() =
no such log |
nonode |
{read only mode, log()} |
{blocked log, log()?} |
{file error, file:filename(), file_error()}

Ensures that the contents of the log are written to the disk. Thisis usually arather expensive operation.

truncate(Log) -> ok | {error, trunc_error_rsn()}
truncate(Log, Head) -> ok | {error, trunc_error_rsn()}
btruncate(Log, BHead) -> ok | {error, trunc_error_rsn()}
Types:

Log = I og()

Head = term()

BHead = iodata()

trunc _error_rsn() =
no such log |
nonode |
{read only mode, log()} |
{blocked log, log()} |
{invalid header, invalid_header()} |
{file error, file:filenane(), file_error()}

Removes al items from a disk log. If argument Head or BHead is specified, this item is written first in the newly
truncated log, otherwise the header given to open/ 1 is used. The header argument is used only once. Next time a
wrap log file is opened, the header givento open/ 1 is used.

truncat e/ 1, 2 are used for internally formatted logs, and bt r uncat e/ 2 for externally formatted logs.

Owners subscribing to notifications receiveat r uncat e message.

48 | Ericsson AB. All Rights Reserved.: Kernel

disk log

If the attempt to truncate thelog fail s, the disk log processterminateswith the EXIT message{ { f ai | ed, Reason},
[{disk_|og, Fun, Arity}]}. Other processes having requests queued receive the message { di sk_I og,
Node, {error, disk_|log_stopped}}.

unblock(Log) -> ok | {error, unblock_error_rsn()}
Types:
Log = 1 og()
unblock error rsn() =
no_such log |
nonode |
{not_blocked, log()} |
{not_blocked by pid, log()}

Unblocks alog. A log can only be unblocked by the blocking process.

See Also
file(3),pg2(3),wap_| og reader(3)

Ericsson AB. All Rights Reserved.: Kernel | 49

erl_boot_server

erl_boot_server

Erlang module

This server is used to assist diskless Erlang nodes that fetch all Erlang code from another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime system is started with command-
lineflag - | oader i net. All hosts specified with command-line flag - host s Host must have one instance of
this server running.

This server can be started with the Kernel configuration parameter st art _boot _ser ver.

Theer| boot server canreadregular filesand filesin archives. Seecode(3) ander| _pri m| oader (3)
in ERTS.

The support for loading code from archive files is experimental. It is released before it is ready to obtain early
feedback. The file format, semantics, interfaces, and so on, can be changed in afuture release.

Exports

add slave(Slave) -> ok | {error, Reason}

Types:
Slave = Host
Host = inet:ip_address() | inet:hostnane()

Reason = {badarg, Slave}
AddsaS| ave nodeto thelist of allowed slave hosts.

delete slave(Slave) -> ok | {error, Reason}

Types:
Slave = Host
Host = inet:ip_address() | inet:hostnane()

Reason = {badarg, Slave}
Deletesa Sl ave node from the list of allowed dave hosts.

start(Slaves) -> {ok, Pid} | {error, Reason}

Types:
Slaves = [Host]
Host = inet:ip_address() | inet:hostnane()
Pid = pid()

Reason = {badarg, Slaves}
Starts the boot server. Sl aves isalist of IP addresses for hosts, which are allowed to use this server as aboot server.

start link(Slaves) -> {ok, Pid} | {error, Reason}
Types.

50 | Ericsson AB. All Rights Reserved.: Kernel

erl_boot_server

Slaves = [Host]
Host = inet:ip_address() | inet:hostnane()
Pid = pid()
Reason = {badarg, Slaves}
Startsthe boot server and linksto the caller. Thisfunctionisused to start the server if itisincluded in asupervision tree.

which slaves() -> Slaves
Types:
Slaves = [Slavel]

Slave =
{Netmask :: inet:ip_address(), Address :: inet:ip_address()}

Returns the current list of allowed slave hosts.

SEE ALSO

erts:init(3),erts:erl_primloader(3)

Ericsson AB. All Rights Reserved.: Kernel | 51

erl_ddll

erl_ddll

Erlang module

This module provides an interface for loading and unloading Erlang linked-in driversin runtime.

This is a large reference document. For casual use of this module, and for most real world applications, the
descriptions of functions| oad/ 2 and unl oad/ 1 are enough to getting started.

The driver isto be provided as a dynamically linked library in an object code format specific for the platform in use,
thatis, . so fileson most Unix systemsand . ddl fileson Windows. An Erlang linked-in driver must provide specific
interfacesto the emulator, so thismoduleis not designed for loading arbitrary dynamic libraries. For moreinformation
about Erlang drivers, seeerts: erl _dri ver .

When describing a set of functions (that is, a module, a part of a module, or an application), executing in a process
and wanting to use addll-driver, we use theterm user. A process can have many users (different modul es needing the
same driver) and many processes running the same code, making up many users of adriver.

Inthe basic scenario, each user loadsthe driver before starting to useit and unloadsthe driver when done. Thereference
counting keeps track of processes and the number of loads by each process. This way the driver is only unloaded
when no one wantsit (it has no user). The driver also keeps track of ports that are opened to it. This enables delay of
unloading until all ports are closed, or killing of all ports that use the driver when it is unloaded.

Theinterface supports two basic scenarios of loading and unloading. Each scenario can aso have the option of either
killing ports when the driver is unloading, or waiting for the ports to close themselves. The scenarios are as follows:

Load and Unload on a" When Needed Basis'

This (most common) scenario simply supports that each user of the driver loads it when needed and unloads it
when no longer needed. The driver isawaysreference counted and aslong as a process keeping the driver |oaded
isstill alive, the driver is present in the system.

Each user of the driver use literally the same pathname for the driver when demanding load, but the users are
not concerned with if the driver is already loaded from the file system or if the object code must be loaded from
file system.

The following two pairs of functions support this scenario:
load/2 and unload/1

When using the| oad/ unl oad interfaces, the driver is not unloaded until the last port using the driver is
closed. Function unl oad/ 1 can return immediately, as the users have no interrest in when the unloading
occurs. The driver is unloaded when no one needs it any longer.

If a process having the driver loaded dies, it has the same effect as if unloading is done.

When loading, function | oad/ 2 returns ok when any instance of the driver is present. Thus, if adriver is
waliting to get unloaded (because of open ports), it ssmply changes state to no longer need unloading.

load_driver/2 and unload_driver/1

These interfaces are intended to be used when it is considered an error that ports are open to adriver that no
user has loaded. The portsthat are still open when the last user callsunl oad_dri ver/ 1 or when the last
process having the driver loaded dies, are killed with reason dr i ver _unl oaded.

The function names| oad_dri ver andunl oad_dri ver arekept for backward compatibility.

52 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

L oading and Reloading for Code Replacement

This scenario can occur if the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is alittle more tedious than Beam code replacement, as one driver cannot
be loaded as both "old" and "new" code. All users of adriver must have it closed (no open ports) before the old
code can be unloaded and the new code can be loaded.

The unloading/loading is done as one atomic operation, blocking all processesin the system from using the driver
in question while in progress.

The preferred way to do driver code replacement is to let one single process keep track of the driver. When
the process starts, the driver isloaded. When replacement is required, the driver is reloaded. Unload is probably
never done, or done when the process exits. If more than one user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other" user has unloaded the driver.

Demanding reload when areload is already in progress is always an error. Using the high-level functions, it is
aso an error to demand rel oading when more than one user has the driver loaded.

To simplify driver replacement, avoid designing your system so that more than one user has the driver loaded.

The two functions for reloading drivers are to be used together with corresponding load functions to support the
two different behaviors concerning open ports:

load/2 and reload/2
This pair of functionsis used when reloading is to be done after the last open port to the driver is closed.

Asr el oad/ 2 waits for the reloading to occur, a misbehaving process keeping open ports to the driver
(or keeping the driver loaded) can cause infinite waiting for reload. Time-outs must be provided outside of
the process demanding the reload or by using the low-level interfacetry | oad/ 3 in combination with
driver monitors.

load_driver/2 and reload_driver/2

This pair of functions are used when open ports to the driver are to be killed with reason
dri ver _unl oaded to alow for new driver code to get loaded.

However, if another process has the driver loaded, calling rel oad_dri ver returns error code
pendi ng_pr ocess. Asstated earlier, the recommended designisto not allow other usersthan the "driver
reloader” to demand loading of the driver in question.

Data Types

driver() = iolist() | atom()
path() = string() | atom()

Exports

demonitor(MonitorRef) -> ok
Types.
MonitorRef = reference()

Removes adriver monitor in much the ssmeway aser | ang: denoni t or/ 1 in ERTS does with process monitors.
For details about how to create driver monitors, seeroni tor/ 2,try_| oad/ 3,andtry_unl oad/ 2.

The function throws abadar g exception if the parameter isnot ar ef er ence() .

format _error(ErrorDesc) -> string()
Types:

Ericsson AB. All Rights Reserved.: Kernel | 53

erl_ddll

ErrorDesc = term()

Takes an Er r or Desc returned by load, unload, or reload functions and returns a string that describes the error or
warning.

Because of peculiarities in the dynamic loading interfaces on different platforms, the returned string is only
guaranteed to describe the correct error if format_error/1is called in the same instance of the Erlang virtual
machine asthe error appeared in (meaning the same operating system process).

info() -> AllInfolList
Types.
AllInfoList = [DriverInfo]
DriverInfo = {DriverName, InfolList}
DriverName = string()
InfoList = [InfoItem]
InfoItem = {Tag :: atom(), Value :: term()}

Returnsalist of tuples{ Dri ver Nane, | nfolList}, wherel nfolLi st istheresult of calingi nf o/ 1 for that
Dr i ver Nane. Only dynamically linked-in drivers are included in the list.

info(Name) -> InfolList

Types:
Name = driver()
InfolList = [InfoItem, ...]

InfoItem = {Tag :: atom(), Value :: term()}

Returns a list of tuples{ Tag, Val ue}, where Tag is the information item and Val ue is the result of calling
i nf o/ 2 withthisdriver name and thistag. Theresultisatuplelist containing all information available about adriver.

The following tags appearsin the list:

s processes
e driver_options

e port_count

 linked_in_driver

e pernanent

e awaiting_ Il oad

e awaiting_unl oad

For a detailed description of each value, seei nf o/ 2.

The function throws abadar g exception if the driver is not present in the system.

info(Name, Tag) -> Value
Types:
Name = driver ()
Tag =
processes |
driver_options |

54 | Ericsson AB. All Rights Reserved.: Kernel

erl_ddll

port count |
linked in driver |
permanent |
awaiting load |
awaiting unload

Value = term()

Returns specific information about one aspect of a driver. Parameter Tag specifies which aspect to get information
about. The return Val ue differs between different tags:

processes

Returns all processes containing users of the specific driversasalist of tuples{ pi d(), i nteger() >= 0},
wherei nt eger () denotesthe number of usersin processpi d() .

driver_options

Returnsalist of the driver options provided when loading, and any options set by the driver during initialization.
Theonly valid optioniski | | _ports.

port _count

Returns the number of ports (ani nt eger () >= 0) using the driver.
i nked_in_driver

Returnsabool ean() , whichist r ue if thedriver isa staticaly linked-in one, otherwisef al se.
per manent

Returns abool ean(), whichist r ue if the driver has made itself permanent (and is not a statically linked-
in driver), otherwisef al se.

awai ti ng | oad

Returns a list of al processes having monitors for | oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nteger () isthe number of monitors held by process pi d() .

awai t i ng_unl oad

Returns a list of all processes having monitors for unl oadi ng active. Each process is returned as
{pid(),integer() >= 0},wherei nteger () isthenumber of monitors held by processpi d() .

If option| i nked_i n_dri ver or per manent returnstr ue, al other optionsreturn | i nked_i n_dri ver or
per manent , respectively.

The function throws abadar g exception if the driver is not present in the system or if the tag is not supported.

load(Path, Name) -> ok | {error, ErrorDesc}

Types:
Path = path()
Name =